Week 5: Root Finding

For these notes you may want to read them with the lecture videos or coding lecture. I show the illustrations in the lecture video, and do a more concrete example in the coding lecture.

This may seem silly because we have been finding roots since like 6th grade. However, recall that we can only do this for low order polynomials. Further, we need to find roots of the characteristic polynomial to analyze/solve differential equations. Plus there are other applications for this.

Let's consider a function similar to $f(x) = x^3$.

Section search (iterate and pray):

Consider the interval [a, b] such that f(a) < 0 and f(b) > 0, so by the intermediate value theorem we know there is some point $x = \xi \in (a, b)$ such that $f(\xi) = 0$. We just want to approximate the root. One thing we can do is break up [a, b] into tiny intervals, and see which $f(x_n)$ is closest to zero. Consider

$$[a,b] = [a,x_1] \cup [x_1,x_2] \cup \cdots \cup [x_n,x_{n+1}] \cup \cdots \cup [x_N,b].$$

Then test each of the nodes, $f(x_1), f(x_2), \ldots, f(x_n), \ldots, f(x_N)$. Notice that this is quite slow.

Bisection:

Since we know the root is between a and b, again by the intermediate value theorem we can just test the mid point: $x_1 = (a+b)/2$. If $f(x_1) < 0$, we will redefine $a = x_1$, but if $f(x_1) > 0$, we will redefine $b = x_1$. We repeat this until we get the desired error. The nice thing about bisection is that it will definitely converge as long as f(a) and f(b) have different signs; i.e., there is a root between a and b.

Newton's method:

Suppose we know that there is a root near x_0 . Lets find the tangent line of f(x) at x_0 and record its intersection with the x-axis. We repeat this process.

Newton's method also has a general formula:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

This is derived directly from the equation of a line. Consider two points on a line (x_1, y_1) and (x_2, y_2) (for us one point will be on the curve f(x) and the other point will be on the x-axis). Further, recall that the slope of the tangent line is just the derivative of the function at that point. Then

$$m = \frac{y_1 - y_2}{x_1 - x_2} \Rightarrow f'(x_n) = \frac{f(x_n) - 0}{x_n - x_{n+1}} \Rightarrow (x_n - x_{n+1})f'(x_n) = f(x_n) \Rightarrow x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

While it converges very fast, if it does converge, there are quite a few draw backs:

- Calculating f'(x) may be prohibitive,
- It may not converge (for example if there are many nearby roots),
- It converges slowly for multiplicities.