
AMATH 301 Rahman Week 8 Theory Part 3

Week 8 Part 3: Euler’s Method

Numerical solutions to ODEs are all about approximating a derivative and using that to approximate the solution. We already
did that in Week 7, so lets use those approximations.

Consider, y′ = f(t, y). Recall

y′ =
y(t + h)− y(t)

h

Let t = tn and t + h = tn+1. Further, we write y(tn) = yn and y(tn+1) = yn+1. Then

yn+1 − yn
h

≈ f(tn, yn),

and therefore

yn+1 = yn + hf(tn, yn); y0 = y(t0) (1)

This is called the Forward Euler method because we use the forward difference.
We can also do a backward approximation.

y′ =
y(t)− y(t− h)

h

Let t = tn+1 and t + h = tn. Further, we write y(tn) = yn and y(tn+1) = yn+1. Then

yn+1 − yn
h

≈ f(tn+1, yn+1),

and therefore

yn+1 = yn + hf(tn+1, yn+1); y0 = y(t0) (2)

This is called the Backward Euler method because we use the forward difference. Notice here we have to solve for yn+1 since it
is implicitly in f().

If you didn’t get a chance to take a look a the Week 7 lectures, here is an alternate, but equivalent derivation of the Forward
Euler’s method:

y′(t) = f(t, y)⇒ f(t, y) ≈ ∆y

∆t
=

y − y0
t− t0

.

Now lets evaluate f at t1, y1, then we get,

f(t1, y1) ≈ y1 − y0
t1 − t0

⇒ y1 − y0 ≈ (t1 − t0)f(t0, y0)⇒ y1 ≈ y0 + (t1 − t0)f(t0, y0).

Look at that! We just developed a formula to approximate y at t1 by using the information we had for the system at t0. If we can
approximate the data at t1 by using the previous time (i.e. t0), why can’t we do this for any time? That is we can approximate y
at tn+1 via the formula, yn+1 ≈ yn + ∆tf(tn, yn). The standard way to write this however is with, h = ∆t, basically a renaming
and we usually use y0 = y(t0), i.e. the initial condition, and we also drop the ≈ and us =. So our general formula is,

yn+1 = yn + hf(tn, yn); y0 = y(t0). (3)

1



When debugging your codes use the following example, and make sure your values are close to mine. Your values might be
ever so slightly off, but not more than say 1e-8.

(1) f(t, y) = 3 + t− y, which gives us the equation yn+1 = yn + h · (3 + tn − yn) where y0 = 1.
(a) Here we have h = 0.1, so we have the following t’s. We get them just by starting at t0 and incrementing. t0 = 0,

t1 = 0.1, t2 = 0.2, t3 = 0.3, t4 = 0.4. Then we have, y1 = y0 + h · (3 + t0 − y0) = 1 + (0.1)(3 + 0 − 1) = 1.2,
y2 = y1 + h · (3 + t1 − y1) = 1.39, y3 = y2 + h · (3 + t2 − y2) = 1.571, and y4 = y3 + h · (3 + t3 − y3) = 1.7439. Lets
put this in a table to make it look pretty,
n 0 1 2 3 4
tn 0 0.1 0.2 0.3 0.4
yn 1 1.2 1.39 1.571 1.7439

(b) Hopefully part a gave you a good idea of how we do these problems, so I’ll just give the table of values I received
when running my code on matlab (remember h = 0.05):
n 0 1 2 3 4 5 6 7 8
tn 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
yn 1 1.1 1.1975 1.2926 1.3855 1.4762 1.5649 1.6517 1.7366

(c) Here h = 0.025,
n 0 1 2 3 4 5 6 7 8
t 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
y 1 1.05 1.0994 1.1481 1.1963 1.2439 1.2909 1.3374 1.3833

n 9 10 11 12 13 14 15 16
t 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4
y 1.4288 1.4737 1.5181 1.562 1.6055 1.6484 1.6910 1.7331

(d) Next we solve the equation via integrating factors to get y = 2 + t − e−t, and calculating the points gives us the
following comparison,

h t = 0.1 0.2 0.3 0.4
0.1 y(t) = 1.2 1.39 1.571 1.7439
0.05 y(t) = 1.1975 1.3855 1.5649 1.7366
0.025 y(t) = 1.1963 1.3833 1.562 1.7331
Exact y(t) = 1.19516 1.38127 1.55918 1.72968


