
AMATH 301 Rahman Week 9 Theory Part 2

Week 9 Part 3: Boundary Value Problems

We are used to initial value problems where we are given initial data. What if we are given boundary data instead? There
are many applications where things are happening for a long period of time and we don’t know what happened in the beginning,
but we do know something about the boundary. The usual problems are solved in a similar fashion to Initial Value Problems.
We do however have a bit more theory.

Definition 1. The boundary values (for a second order ODE) y(a), y(b), y′(a), and/or y′(b) are said to be homogeneous if any
two of the above boundary data are zero.

We also have eigenvalue problems for BVPs. Recall that for matrices the eigenvalue problems were of the form Ax = λx,
where we solve for the “eigenvalue”, λ. For BVPs of a second order ODE, we consider our linear operator to be L = d2/dx2

(for matrices the linear operator is the matrix A). So we wish to solve the problem Ly = λy; i.e. y′′ + λy = 0. Here the y′ns
corresponding to λ′ns are called eigenfunctions (similar to eigenvectors in the matrix case). We notice that eigenvalue problems
are only for homogeneous boundary data.

Definition 2. The boundary value problem

y′′ + λy = 0; (with homogeneous boundary conditions), (1)

is called an eigenvalue problem. And the nontrivial (i.e. yn 6= 0) solutions yn corresponding to λn are the eigenfunctions of the
corresponding eigenvalues.

Now lets do some boundary value problems,

Ex: y′′ + y = 0; y′(0) = 1, y(L) = 0.
Solution: The characteristic polynomial gives us

r2 + 1 = 0⇒ r = ±i⇒ y = A cos t+B sin t⇒ y′ = −A sin t+B cos t.

Then our first boundary condition gives y′(0) = B = 1, and

y(L) = A cosL+ sinL = 0⇒ A = − tanL; L 6= (2k + 1)
π

2
, k = 0, ±1, ±2, . . .

However, if cosL = 0, sinL = 0, but this is clearly false because sinx 6= 0 when cosx = 0 and vice-versa, so the BVP
has no solution if L = (2k + 1)π2 .

Ex: y′′ + λy = 0; y′(0) = y′(π) = 0.
Solution:
(i) If λ > 0, let λ = µ2. Then

r = ±iµ⇒ y = A cosµt+B sinµt⇒ y′ = −Aµ sinµt+Bµ cosµt

From the first boundary condition we get y′(0) = Bµ = 0 ⇒ B = 0 because λ > 0. From the second B.C. we get
y′(π) = −Aµ sinµπ = 0. Since we don’t want trivial solutions if we can avoid them we can’t have A = 0, so we require
sinµπ = 0 then µ = nπ where n = 1, 2, . . ., so our eigenfunctions for the corresponding eigenvalues are

yn = cosnπt; λn = n2, n = 1, 2, . . .

(ii) If λ < 0, let λ = −µ2. Then

r = ±µ⇒ y = c1e
µt + c2e

−µt = A coshµt+B sinhµt⇒ y′ = A sinhµt+B coshµt.

The B.C.’s give y′(0) = Bµ = 0⇒ B = 0 and y′(π) = A sinhµπ = 0, but sinh is only zero at zero and µ 6= 0 since λ < 0,
so we have A = 0. Then y ≡ 0, so unfortunately we get a trivial solution. (iii) If λ = 0, y = c1x + c0 ⇒ y′ = c1, then
applying the B.C.’s give y′(0) = c1 = 0 and y′(π) = 0 automatically. Then our eigenvalue and eigenfunction are

y0 = 1, λ0 = 0.

Notice I left out the constants. It is up to you if you want to include it or not.
Complete Solution:

y = c0 +

∞∑
n=1

An cosnπt
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Ex: y′′ + λy = 0; y′(0) = y(L) = 0
Solution:
(i) If λ > 0, let λ = µ2, then

y = A cosµt+B sinµt⇒ y′ = −Aµ sinµt+Bµ cosµt.

Notice how we have the same exact general solution! You do enough of these problems and you can go straight to
the solution and it’s derivative without having to do the characteristic polynomial. Now, from the B.C.’s we get
y′(0) = Bµ = 0 ⇒ B = 0 and y(L) = A cosµL = 0. So we require µ = (2n − 1)π/2L where n = 1, 2, 3, . . ., then our
eigenvalues and eigenfunctions are

yn = An cos
(

(2n− 1)
π

2
t
)

; λn = (2n− 1)2
π2

4
, n = 1, 2, 3, . . .

(ii) If λ < 0, let λ = −µ2, then

y = A coshµt+B sinhµt⇒ y′ = Aµ sinhµt+Bµ coshµt.

From the B.C.’s we get y′(0) = Bµ = 0 ⇒ B = 0 and y(L) = A coshµL = 0 ⇒ A = 0, again it’s the trivial solution
y ≡ 0.
(iii) If λ = 0, y = c1x + c0 ⇒ y′ = c1, from the B.C.’s we get y′(0) = c1 = 0 and y(L) = c0 = 0, so again we have the
trivial solution y ≡ 0.

Complete Solution:

y =

∞∑
n=1

An cos
(

(2n− 1)
π

2
t
)


