A function $~f$ defined on a set $~X$ has limit $~L$ at $~x_0$
$$ \lim_{x\to x_0} f(x) = L $$if, given any real number $\epsilon > 0$, there exists a real number $~\delta > 0$ such that
$$ |f(x) - L| < \epsilon, ~~ \text{ whenever } ~~ x \in X ~~ \text{ and } ~~ 0 < |x - x_0| < \delta. $$Given any real number $\epsilon > 0$, there exists a real number $~\delta > 0$ such that
$$ |f(x) - L| < \epsilon, ~~ \text{ whenever } ~~ x \in X ~~ \text{ and } ~~ 0 < |x - x_0| < \delta. $$If $f(x) = \sin (x)$ and we are given $\epsilon = 10^{-5}$, let's test to see what $\delta$ should be:
f = @(x) sin(x); epsilon = .00001; x0 = 0; x = 0.00001; format long %display more digits abs(f(x)-f(x0)) abs(f(x)-f(x0)) < epsilon %returns 0 for false, and 1 for trueans = 9.999999999833334e-06 ans = logical 1
Let $f$ be a function defined on a set $X$ of real numbers and $x_0 \in X$. Then $f$ is continuous at $x_0$ if
$$ \lim_{x \to x_0} f(x) = f(x_0) $$The set of all continuous functions defined on the set $X$ is denoted by $C(X)$ ($C[a,b]$ or $C(a,b]$ if $X$ is an interval).
The function $f(x) = |x|$ is continuous everywhere but the following function is not
$$ g(x) = \begin{cases} -1, & x < 0,\\ 1 & x \geq 0. \end{cases} $$x = linspace(-1,1,100); y1 = abs(x); % evaluate f(x) y2 = sign(x); % evlauate g(x) plot(x,y1,'r') % plotted in red hold on % don't erase the plot for the next plot command plot(x,y2,'k') % plotted in black xlabel('x'); ylabel('f(x) and g(x)') %label axes ylim([-1.1,1.1])
v = [1,2,3]; % row vector w = [1;2;3]; % column vector v wv = 1 2 3 w = 1 2 3
v = [1,2,3]; % row vector w = [1;2;3]; % column vector w(1) v(1:2) w(2:3) sum(w)ans = 1 ans = 1 2 ans = 2 3 ans = 6
M = [1,2,3,4;5,6,7,8;9,10,11,12;12,14,15,16] M(1,4); % get the (1,4) element M(2:3,2:3);% get the "middle" block of the matrix M(3,:); % Get row 3 sum(M)M = 1 2 3 4 5 6 7 8 9 10 11 12 12 14 15 16 ans = 27 32 36 40
Add all positive integers less $n+1$
n = 10; S = 0; % using capital letters because sum() is a built-in function for i = 1:n S = S + i; end S n*(n+1)/2S = 55 ans = 55
Find the power of 2 that is greater than or equal to $n$ but less than $2n$
n = 130; m = 1; while m <= n m = m*2; end mm = 256