SEC. 1.3 GAUSSIAN ELIMINATION

Now lets go back and do a bunch of Gaussian Elimination problems. Again consider our equation from last time

$$2u + v + w = 54u - 6v = -2-2u + 7v + 2w = 9$$
(1)

0

we will write this as an augmented matrix by appending the right hand side (RHS) to the coefficient matrix,

$$2\begin{bmatrix}2 & 1 & 1 & | & 5\\4 & -6 & 0 & | & -2\\-2 & 7 & 2 & | & 9\end{bmatrix} = -1\begin{bmatrix}2 & 1 & 1 & | & 5\\0 & -8 & -2 & | & -12\\-2 & 7 & 2 & | & 9\end{bmatrix} = -1\begin{bmatrix}2 & 1 & 1 & | & 5\\0 & -8 & -2 & | & -12\\0 & 8 & 3 & | & 14\end{bmatrix} = \begin{bmatrix}2 & 1 & 1 & | & 5\\0 & -8 & -2 & | & -12\\0 & 0 & 1 & | & 2\end{bmatrix}$$

This means w = 2, then we plug into the second equation to get v = 1, and finally the first to get u = 1.

The elements down the diagonal are called pivots. The augmented matrix is said to be in row-echelon form. The original matrix,

2	1	1
0	$^{-8}$	-2
0	0	1

is said to be in upper triangular form.

Here are a few more Gaussian elimination examples.

Ex:

$${3 \begin{bmatrix} 1 & 3 & | & 11 \\ 3 & 1 & | & 9 \end{bmatrix}} = \begin{bmatrix} 1 & 3 & | & 11 \\ 0 & -8 & | & -24 \end{bmatrix} \Rightarrow \boxed{y = 3} \Rightarrow \boxed{x = 2};$$

Ex:

	-1	2	3/	2]	[-1]	2	3/2]
-2	2	-4	3		0	0	-6

Clearly this matrix is singular, and since the RHS is nontrivial it will have no solutions. Ex: [1 0 _3 ↓ .9] $\begin{bmatrix} 1 & 0 & -3 \end{bmatrix}$ -27 **Γ**1 0 9 |

$$3 \begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 3 & 1 & -2 & | & 5 \\ 2 & 2 & 1 & | & 4 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 0 & 1 & 7 & | & 11 \\ 0 & 2 & 7 & | & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -3 & | & -2 \\ 0 & 1 & 7 & | & 11 \\ 0 & 0 & -7 & | & -14 \end{bmatrix}$$

then $x_3 = 2, x_2 = -3, x_1 = 4.$

Ex:

	2	0	3		3		2	0	3		3		$\boxed{2}$	0	3		3
2	4	-3	7		5	=	0	-3	1		-1	=	0	-3	1		$^{-1}$
4	8	-9	15	Ì	10	3	0	-9	3	Ì	-2_{-}		0	0	0	Ì	1

Clearly this matrix is singular, and since the RHS is nontrivial it will have no solutions.