SEC. 9.4 ITERATIVE METHODS

Scalar iteration

Suppose we want to solve $(1 - m)x = b$; $|m| < 1$, then clearly $x = b/(1 - m)$. However, we want to see how these numerical methods are derived, so lets pretend that we do not know the solution. Notice that $(1 - m)x = b$, then

$$
x = mx + b \tag{1}
$$

This is just the equation of a fixed oint of a recurrence relation. If the recurrence is stable,

$$
x_{n+1} = mx_n + b \tag{2}
$$

will approximate the solution. If we assume that $x_0 = 0$ we get

$$
x_1 = b \Rightarrow x_2 = mb + b \Rightarrow \dots \Rightarrow x_n = m^{n-1}b + m^{n-2}b + \dots + m^2b + mb + b.
$$

This is just a geometric series in m , so

$$
x_n = \frac{1 - m^n}{1 - m} b. \tag{3}
$$

Notice that if $|m| < 1$,

$$
x_n \to \frac{b}{1-m} \qquad \text{as} \qquad n \to \infty
$$

Matrix iteration

Similarly, for matrices, we can do $x_{n+1} = Mx_n + b$, but this gives us the fixed point equation

$$
x = Mx + b \Rightarrow (I - M)x = b.
$$
\n⁽⁴⁾

If $A = I - M$, then this is our infamous $Ax = b$ problem. Notice that $Mⁿ$ has to be decreasing as $n \to \infty$ for our algorithm to converge. Also, $I - M$ must be nonsingular.

Jacobi Method Let $A = L + D + U$, then

 $Ax = (L + D + U)x = b \Rightarrow D^{-1}(L + D + U)x = D^{-1}b \Rightarrow x + D^{-1}(L + U)x = D^{-1}b,$

which yields

$$
x_{n+1} = -D^{-1}(L+U)x_n + D^{-1}b.
$$
 (5)

Here $M = -D^{-1}(L+U)$ and b is replaced with $D^{-1}b$.

Gauss-Seidel Method

Suppose L is faster to invert than A, and not much slower to invert than D, then we can invert $L + D$,

$$
(L+D)^{-1}(L+D+U)x = (L+D)^{-1}b \Rightarrow x + (L+D)^{-1}Ux = (L+D)^{-1}b,
$$

and

$$
x_{n+1} = -(L+D)^{-1}Ux_n + (L+D)^{-1}b.
$$
\n(6)

Convergence

Definition 1. An $n \times n$ matrix A is said to be strictly diagonally dominant if

$$
|a_{ii}| > \sum_{j=1, i \neq j}^{n} |a_{ij}|, \quad \forall \quad 1 \leq i \leq n.
$$
 (7)

While we won't prove it in this class, but it can be shown that the Jacobi and Gauss-Seidel methods are guaranteed to converge only if the matrix is strictly diagonally dominant.