Sec. 3.2 Inequalities

I am going to do this slightly differently from the book. Lets first talk about projections onto a line.

Projections onto lines

Please refer to the video for the sketch.

The shortest distance from a point \vec{b} onto a line through \vec{a} is via a line through \vec{b} that is perpendicular to the line through \vec{a} . This will meet the line through \vec{a} at a point \vec{p} . Then \vec{p} is simply a scaled version of \vec{a} , so $\vec{p} = \hat{x}\vec{a}$, and the perpendicular line is $\vec{b} - \vec{p}$. Then $\vec{a}^T(b - \hat{x}\vec{a}) = 0$, and solving for \hat{x} give us $\hat{x} = (\vec{a}^T\vec{b})/(\vec{a}^T\vec{a})$.

Definition 1. The projection of the vector \vec{b} onto the line in the direction of \vec{a} is

$$\vec{p} = \hat{x}\vec{a} = \left(\frac{\vec{a}^T\vec{b}}{\vec{a}^T\vec{a}}\right)\vec{a}.$$
(1)

We will use projections for least squares solutions to singular systems, and to derive the Cauchy-Schwartz inequality. Before we go into that, lets first do some examples with projections.

Ex: Project b = (1, 2, 3) onto the line through a = (1, 1, 1) to get \hat{x} and p.

Solution:

$$\hat{x} = \frac{a^T b}{a^T a} = \frac{6}{3} = 2 \Rightarrow p = \hat{x}a = (2, 2, 2)$$

$$\begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

Ex: Consider the vectors

$$\vec{u} = \begin{bmatrix} 5\\-3\\1 \end{bmatrix}, \qquad \vec{v} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$$

(1) For u onto v we do

$$\hat{x} = \frac{v^T u}{v^T v} = \frac{8}{2} = 4 \Rightarrow p = \hat{x}v = (4, -4, 0)$$

m

(2) For v onto u we do

$$\hat{x} = \frac{u^T v}{u^T u} = \frac{8}{35} \Rightarrow p = \hat{x}u = \left(\frac{8}{7}, -\frac{24}{35}, \frac{8}{35}\right)$$

The Cauchy-Schwartz inequality

As mentioned before, this leads us to perhaps the most important inequality in mathematics. Lets derive it here. Recall that the error vector $e = b - p \Rightarrow ||e|| = ||b - p||$, then writing out the equation for the projection vector and squaring gives us

$$\left\| b - \frac{a^T b}{a^T a} a \right\|^2 = \left(b - \frac{a^T b}{a^T a} a \right)^T \left(b - \frac{a^T b}{a^T a} a \right) = b^T b - 2 \frac{(a^T b)^2}{a^T a} + \left(\frac{a^T b}{a^T a} \right)^2 a^T a = \frac{(b^T b)(a^T a) - (a^T b)^2}{a^T a} \ge 0$$

since we squared the left hand side. Since the denominator is finite,

$$(b^T b)(a^T a) - (a^T b)^2 \ge 0 \Rightarrow (a^T b)^2 \le ||a||^2 ||b||^2$$

Another way we can derive this inequality is through the law of cosines.

$$\left|\frac{a^{T}b}{\|a\|\|b\|}\right| = |\cos\theta| \le 1 \Rightarrow |a^{T}b| \le \|a\|\|b\|.$$

Theorem 1. All inner products $\langle a, b \rangle$ satisfy the <u>Cauchy-Schwartz inequality</u>

$$|a^T b| = ||a|| ||b||.$$
(2)