MATH 2360 RAHMAN Lectures 14 and 15

5.3 GRAM-SCHMIDT

By now we are used to finding bases, but recall that orthogonal, or even better, orthonormal bases are preferred.

Definition 1. The vectors ¢y, ..., q, are orthonormal if
v JO0 i (giving orthogonality), (1)
A FRT j (giving the normalization);

We can also create matrices out of these bases. Notice that the standard basis for an Euclidean space is in the columns of
the identity matrix. However, if we want a generic orthonormal basis we need to apply the Gram-Schmidt orthogonalization
procedure.

Theorem 1. If Q (square or rectangular) has orthonormal columns, then QTQ = 1.

Definition 2. An orthogonal matrix is a square matrix with orthonormal columns.

Theorem 2. For orthogonal matrices, the transpose is the inverse.

Q= (cos@ —sin9> QT = ( cos 6 sinH)

sinf  cosf —sinf cosf

Ex: Consider

which we can verify by multiplying.
Ex: Any permutation matrix P (consisting of only row exchanges) is an orthogonal matrix. The criteria of orthonormal
columns and square are trivially satisfied. Then we check P~! = PT by checking PPT = I.

Theorem 3. Multiplication by any @ preserves lengths: ||Qx|| = ||z|| for all x.
It also preserves inner products and angles: (Qx)T (Qy) = 27QTQy = 2Ty.

Consider Qz = b where ¢; are the columns of ). Then we can write
b=z1q1 +T2g2+ -+ Tigi + -+ Tpn-_1gn—1 + Tnqn
If we multiply both sides by ¢ we get
@ =0+ +xiql i+ +0=x; =2 =Q"h

So if your A is an orthogonal matrix, you don’t have to do Gaussian Elimination.

The Gram-Schmidt Process

Suppose you are given three independent vectors a, 5, ¢. If they are orthonormal we can project a vector ' onto @ by doing
(@T%)a@. To project onto the @ — b plane we do (a7%)a + (b7 D)b, etc.

Process: We are given @, l;,é’ and we want {1, ¢>,G3. No problem with ¢i; i.e., 1 = a/l||a|]| (we don’t have to change its
direction, just normalize.) The problem begins with ¢o, which has to be orthogonal to ¢;. If the vector b has any component in
the direction of ¢; (i.e., direction of a) it has to be subtracted: B = b — (¢{ b)q1, then g2 = B/||B||, and this continues for gs:
C=c—(qFc)q1 — (gL c)qa, then g3 = C/||C]|, so on and so forth.

Ex: a=(1,0,1), b=(1,0,0), and ¢ = (2,1,0) for A = [a b q.

Solution:
Step 1: Make the first vector into a unit vector: | g1 = a/v2 = (1/v/2,0,1/V2) |

Step 2a: Subtract from the second vector its component in the direction of the first: | B = b — (¢{ b)q1 = (1/2,0,—1/2) |.

Step 2b: Divide B by its magnitude: | g2 = B/||B|| = (1/v/2,0,—1/v2) |.

Step 3a: Subtract from the third vector its component in the firs and second directions: | C' = ¢ — (¢f ¢)q1 — (g2 ¢)g2 = (0,1,0) |.
Step 3b:  We normalize C, but C' is already a unit vector so | g3 = (0, 1,0)

Then we can write () as the matrix

. V2 1/vV2 0
Q=la @ | = 0 0 1

o 1/vV2 -1/v2 0

From the matrix QQ we can get a A = QR factorization. This means that A = QR = QT A = R, then

== a ===\ (I || gia qib qic
R=|--- ¢ ——- a b cl=0 b ¢ec (2)
||

| 0 0 gic

1



Now lets do a bunch of examples from the book on page 263.

1) They are orthogonal but not normal.
5) Same as above.

25) We can get | ¢1 = (3,4)/5 | immediately. Then
3

_ - o (#3/mr 1257 —
£(3.4)/5 =1(16/25,-12/25) | = ¢» = T P (4/5,-3/5)].

B=b—(qib)q = (1,0) -

27) |¢1 = (0,1)| Then

B=b-(qb)a = (2,5) = 5(0,1) =[ (2,0)| = | @2 = (1,0) |
29) The vectors are already orthogonal, so just divide by the magnitude.
33) |q1 =(0,1,1)/v2| Then

- %(07 1/\/5’ 1/\/5) = (17 1/27 _1/2) = q2 = (17 1/2a _1/2)/\/3/72 = (\/%’ \/%/27 _\/%/2)

And
C=c— (q,fcﬁh - (ng)QQ =(1,0,1) — %(0’ 1/\/§a 1/\/§> - @(\/%7 \/%/27 _\/%/2)
=(1,0,1) —(0,1/2,1/2) — (1/3,1/6,—1/6) = (2/3,—-2/3,2/3).
So,

a3 = (2/3,-2/3,2/3)/(2v/2/3) = (1/V3,-1/V3,1/V/3).



