
Math 2360 Rahman Lecture 16

5.4 Least Squares

We noticed that we often come across matrices with no solution. In class we have ignored them for the most part, but in
real life we can’t. One way to “solve” this is to throw out data points, but this results in large errors. Lets think of a way to
minimize this average error instead of throwing out data points.

We think of a squared error: Suppose we have data points 2x1 = b1, 3x2 = b2, 4x3 = b3. One way to minimize the error
between x and the data points is to let

E2 = (2x− b1)2 + (3x− b2)2 + (4x− b3)2.

If there was an exat solution then E2 = 0. In the more likely case E2 will be a parabola. We can find the minimum of a parabola
just by taking the derivative and finding critical points, then doing the max and min test.

dE2

dx2
= 2[2(2x− b1) + 3(3x− b2) + 4(4x− b3)] = 0.

Solving for x gives us

x =
2b1 + 3b2 + 4b3

22 + 32 + 42
=

aT b

aTa
,

which is called the least square “solution” in one variable. In order to separate the notation, we shall call the least squares
solution x̂ instead of x.

For multiple variables, all vectors perpendicular to the column space lie on the left nullspace. Thus the error vector e = b−Ax̂
must be in the nullspace of AT : AT (b − Ax̂) = 0 ⇒ ATAx̂ = AT b. Then x̂ = (ATA)−1(AT b). And the projection itself would
be p = Ax̂ = A(ATA)−1(AT b).

Ex: Consider

A =

1 2
1 3
0 0

 , b =

4
5
6


Notice that Ax = b has no solution. So we try to find a least squares solution by using the normal equation: ATAx̂ = AT b.

ATA =

(
1 1 0
2 3 0

)1 2
1 3
0 0

 =

(
2 5
5 13

)
and

AT b =

(
1 1 0
2 3 0

)4
5
6

 =

(
9
23

)
We can either solve this through Gaussian elimination or by inverting the matrix. For this particular problem we chose
to invert.

x̂ = (ATA)−1(AT b) =

(
13 −5
−5 2

)(
9
23

)
=

(
2
1

)
Then the projection is

p = Ax̂ =

1 2
1 3
0 0

(2
1

)
=

4
5
0


Now lets do a bunch of examples from the book on page 275.

25) First we find the normal equation ATAx = AT b,

ATA =

(
2 1 1
1 2 1

)2 1
1 2
1 1

 =

(
6 5
5 6

)
And

AT b =

(
2 1 1
1 2 1

) 2
0
−3

 =

(
1
−1

)
We can see the solution without even inverting or doing Gaussian elimination: x̂ = (1,−1). Notice that gives us the line
y = −x.

Also, the projection is

p = Ax̂ =

2 1
1 2
1 1

( 1
−1

)
=

 1
−1
0


1



27) First we find the normal equation

ATA =

1 1 0 1
0 1 1 1
1 1 1 0




1 0 1
1 1 1
0 1 1
1 1 0

 =

3 2 2
2 3 2
2 2 3


and

AT b =

1 1 0 1
0 1 1 1
1 1 1 0




4
−1
0
1

 =

4
0
3


Then we solve the normal equation3 2 2 | 4

2 3 2 | 0
2 2 3 | 3

 =

6 4 4 | 8
6 9 6 | 0
6 6 9 | 9

 =

6 4 4 | 8
0 5 2 | −8
0 2 5 | 1

 =

6 4 4 | 8
0 10 25 | 5
0 10 4 | −16

 =

6 4 4 | 8
0 10 25 | 5
0 0 −21 | −21

 .

Then our least square solution for x̂ = (2,−2, 1), and the projection is

p = Ax̂ =


1 0 1
1 1 1
0 1 1
1 1 0


 2
−2
1

 =


3
1
−1
0


31) Here we are given data points and we need to find the least square fit (also called regression). Lets first write this as a

system of equations with y = mx + b,

b +−m = 1

b + m = 0

b + 3m = −3

Then the matrix form of this is 1 −1
1 1
1 3

[ b
m

]
=

 1
0
−3


Then we find the normal equation

ATA =

[
1 1 1
−1 1 3

]1 −1
1 1
1 3

 =

[
3 3
3 11

]
and

AT b =

[
1 1 1
−1 1 3

] 1
0
−3

 =

[
−2
−10

]
Then we have

(ATA)

(
b
m

)
= AT b⇒ b = 1/3,m = −1⇒ ŷ = −x̂ + 1/3.

33) Again, we fill in the matrix for the least squares

A =


1 −2
1 −1
1 0
1 1
1 2


Then our normal equation becomes

ATA =

[
5 0
0 10

]
, and AT b =

[
7
0

]
So, b = 7/5 and m = 0, then ŷ = 7/5, which is a horizontal line.

For a quadratic fit we simply fill in the quadratic equation y = ax2 + bx + c.


