MATH 2360 RAHMAN Lecture 6

4.1 - 4.3 VECTOR SPACES AND SUBSPACES
Here we saw some definitions and how they apply to some examples.

Definition 1. The vectors vy, ..., v, are said to be Linearly Independent if c;v; + -+ + ¢,v, # 0 when ¢; #0 fori =1,...,n;
otherwise they are said to be Linearly Dependent.

Definition 2. The expression cjv1 + - - - + ¢, v, is said to be a Linear Combination of vy, ..., vy,.

A vector space is simply a space that contains all of the axioms of vector addition and scalar multiplication, and is self-
contained; i.e., addition and scalar multiplication of any combination of vectors will produce a vector in that space.

Definition 3. A subspace of a vector space is a nonempty subset that satisfies the requirements for a vector space: Linear
combinations stay in the subset;

(i) if we add any vectors z and y in the subspace x + y is in the subspace,
(i) if we multiply any vector z in the subspace by any scalar ¢, cz is in the subspace.

Now lets do some problems from pg. 173.

1) W is clearly nonempty and a subset of V. We just have to check the properties listed in Def. 3.
(i)
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By the axioms of arithmetic x; 4+ y; will be real numbers, and the last entry is zero, so this is in W.
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Again, by the axioms of arithmetic cz; will be real numbers, and the last entry is zero, so this is in W as well.
Since both properties are satisfied, W is a subspace of V.
2) Just as the previous problem
(i)
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By the axioms of arithmetic all three entries will be real, thus matching the definition of the set W, and hence the
vector is in W.
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7) Here both properties can be violated. For property (ii),
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In general —c # —1, so this vector cannot be in W. Hence, W is not a subspace of V.

9) Here only property (ii) is violated,
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therefore is not in W, and W is not a subspace of V.



