
Math 2360 Rahman Lecture 7

4.4 - 4.5 Spanning sets and linear independence; basis and dimension.

First we notice that n vectors cannot be linearly independent in Rm if n > m. Further, if we do not have enough vectors a
linear combination will not be able to create any other vector in the space. Lets see what this means about the dimension of the
space.

Definition 1. If a vector space V consists of all linear combinations of w1, . . . , wn, then these vectors span the space. Every
vector v ∈ V is some combination of w′s; i.e., v = c1w1 + · · ·+ cnwn.

For example

w1 =

1
0
0

 , w2 =

0
1
0

 , w3 =

−2
0
0


spans the x− y plane in R3. However, we notice that they are not linearly independent since w3 = −2w1.

Definition 2. A basis for V is a sequence of vectors having the following two properties:

(1) The vectors are linearly independent (not too many vectors)
(2) They span the space V (not too few vectors)

We sketched this in class. Make sure you understand that picture.

Definition 3. Any two bases for a vector space V contains the same number of vectors. This number, which is shared by all
bases and expresses the number of “degrees of freedom” of the space, is the dimension of V .

This leads us to a coupe of theorems.

Theorem 1. If v1, . . . , vm and w1, . . . , wn are both bases for the same vector space, then m = n.

Theorem 2. Any linearly independent set in V can be extended to a basis, by adding more vectors if necessary.
Any spanning set in V can be reduced to a basis, by discarding vectors if necessary.

Now lets look at some examples on pg. 184

1) Do check if vectors are linear combinations, we just assume they are using c1 and c2, then we check if c1 and c2 are
nontrivial.

a)

c1

 2
−1
3

+ c2

5
0
4

 =

2c1 + 5c2
−c1 + 0

3c1 + 4c2

 ?
=

−1
−2
2


This gives us c1 = 2, c2 = −1 and the other equation is satisfied. So,

z = 2

 2
−1
3

−
5

0
4


c) We can just use the addition from above2c1 + 5c2

−c1 + 0
3c1 + 4c2

 ?
=

 1
−8
12


Then c1 = 8, c2 = −3, and the other equation is satisfied, so

w = 8

 2
−1
3

− 3

5
0
4


d) We do the same as the last two 2c1 + 5c2

−c1 + 0
3c1 + 4c2

 ?
=

 1
1
−1


Then plugging into the second equation gives us c1 = −1, and the first gives c2 = 3/5, but 3c1 + 4c2 6= 1, so we
cannot write u as a linear combination of the vectors in S.

1



9) S does span R2, which we showed graphically, but also if it didn’t, then s1 would be a multiple of s2, but if s1 = cs2 ⇒
c = 0.

11) Same reasoning as (9).
19) S spans R3. We saw that we can write x1, x2, x3 independently as functions of c1, c2, c3, but I showed a better way in

the next section.
21) S does not span R3. Not enough vectors, but it does span the plane.
27) These are linearly independent since

c1

[
−2
2

]
+ c2

[
3
5

]
=

[
−2c1 + 3c2
2c1 + 5c2

]
=

[
0
0

]
⇒ c2 = 2c1/3 and c2 = −2c1/5⇒ c1 = c2 = 0.

29) Any set with the zero vector is linearly dependent.

Now lets look at some problems from pg. 193

1) The vectors will be e1, . . . , e6 where ei has a 1 in the ith entry and zero elsewhere.
7) Linearly dependent because of the zero vector.
9) Not enough vectors.

21) Linearly dependent.
39) Linearly independent and spans the space, so it does form a basis. Notice that it does have enough vectors and we can

show it is linearly independent graphically or by solving

c1

[
4
−3

]
+ c2

[
5
2

]
=

[
4c1 + 5c2
−3c1 + 2c2

]
=

[
0
0

]
⇒ c1 = −5c2/4 and c1 = 2c2/3⇒ c1 = c2 = 0.

41) Same as the previous problem and

c1

1
5
3

+ c2

0
1
2

+ c3

0
0
6

 =

 c1
5c1 + c2

3c1 + 2c2 + 6c3

 =

0
0
0

⇒ c1 = c2 = c3 = 0.


