4.4 - 4.5 Spanning sets and linear independence; basis and dimension.

First we notice that n vectors cannot be linearly independent in \mathbb{R}^m if n > m. Further, if we do not have enough vectors a linear combination will not be able to create any other vector in the space. Let's see what this means about the dimension of the space.

Definition 1. If a vector space V consists of all linear combinations of w_1, \ldots, w_n , then these vectors <u>span</u> the space. Every vector $v \in V$ is some combination of w's; i.e., $v = c_1w_1 + \cdots + c_nw_n$.

For example

$$w_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad w_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad w_3 = \begin{bmatrix} -2\\0\\0 \end{bmatrix}$$

spans the x - y plane in \mathbb{R}^3 . However, we notice that they are not linearly independent since $w_3 = -2w_1$.

Definition 2. A basis for V is a sequence of vectors having the following two properties:

- (1) The vectors are linearly independent (not too many vectors)
- (2) They span the space V (not too few vectors)

We sketched this in class. Make sure you understand that picture.

Definition 3. Any two bases for a vector space V contains the same number of vectors. This number, which is shared by all bases and expresses the number of "degrees of freedom" of the space, is the <u>dimension</u> of V.

This leads us to a coupe of theorems.

Theorem 1. If v_1, \ldots, v_m and w_1, \ldots, w_n are both bases for the same vector space, then m = n.

Theorem 2. Any linearly independent set in V can be extended to a basis, by adding more vectors if necessary. Any spanning set in V can be reduced to a basis, by discarding vectors if necessary.

Now lets look at some examples on pg. 184

- 1) Do check if vectors are linear combinations, we just assume they are using c_1 and c_2 , then we check if c_1 and c_2 are nontrivial.
 - a)

$$c_1 \begin{bmatrix} 2\\ -1\\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 5\\ 0\\ 4 \end{bmatrix} = \begin{bmatrix} 2c_1 + 5c_2\\ -c_1 + 0\\ 3c_1 + 4c_2 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} -1\\ -2\\ 2 \end{bmatrix}$$

This gives us $c_1 = 2$, $c_2 = -1$ and the other equation is satisfied. So,

$$z = 2 \begin{bmatrix} 2\\-1\\3 \end{bmatrix} - \begin{bmatrix} 5\\0\\4 \end{bmatrix}$$

c) We can just use the addition from above

$$\begin{bmatrix} 2c_1 + 5c_2 \\ -c_1 + 0 \\ 3c_1 + 4c_2 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 1 \\ -8 \\ 12 \end{bmatrix}$$

Then $c_1 = 8$, $c_2 = -3$, and the other equation is satisfied, so

$$w = 8 \begin{bmatrix} 2\\-1\\3 \end{bmatrix} - 3 \begin{bmatrix} 5\\0\\4 \end{bmatrix}$$

d) We do the same as the last two

$$\begin{bmatrix} 2c_1 + 5c_2 \\ -c_1 + 0 \\ 3c_1 + 4c_2 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

Then plugging into the second equation gives us $c_1 = -1$, and the first gives $c_2 = 3/5$, but $3c_1 + 4c_2 \neq 1$, so we cannot write u as a linear combination of the vectors in S.

- 9) S does span \mathbb{R}^2 , which we showed graphically, but also if it didn't, then s_1 would be a multiple of s_2 , but if $s_1 = cs_2 \Rightarrow c = 0$.
- 11) Same reasoning as (9).
- 19) S spans \mathbb{R}^3 . We saw that we can write x_1, x_2, x_3 independently as functions of c_1, c_2, c_3 , but I showed a better way in the next section.
- 21) S does not span \mathbb{R}^3 . Not enough vectors, but it does span the plane.
- 27) These are linearly independent since

$$c_1 \begin{bmatrix} -2\\2 \end{bmatrix} + c_2 \begin{bmatrix} 3\\5 \end{bmatrix} = \begin{bmatrix} -2c_1 + 3c_2\\2c_1 + 5c_2 \end{bmatrix} = \begin{bmatrix} 0\\0 \end{bmatrix} \Rightarrow c_2 = 2c_1/3 \text{ and } c_2 = -2c_1/5 \Rightarrow c_1 = c_2 = 0$$

29) Any set with the zero vector is linearly dependent.

Now lets look at some problems from pg. 193

- 1) The vectors will be e_1, \ldots, e_6 where e_i has a 1 in the i^{th} entry and zero elsewhere.
- 7) Linearly dependent because of the zero vector.
- 9) Not enough vectors.
- 21) Linearly dependent.
- 39) Linearly independent and spans the space, so it does form a basis. Notice that it does have enough vectors and we can show it is linearly independent graphically or by solving

$$c_1 \begin{bmatrix} 4 \\ -3 \end{bmatrix} + c_2 \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 4c_1 + 5c_2 \\ -3c_1 + 2c_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow c_1 = -5c_2/4 \text{ and } c_1 = 2c_2/3 \Rightarrow c_1 = c_2 = 0.$$

41) Same as the previous problem and

$$c_1 \begin{bmatrix} 1\\5\\3 \end{bmatrix} + c_2 \begin{bmatrix} 0\\1\\2 \end{bmatrix} + c_3 \begin{bmatrix} 0\\0\\6 \end{bmatrix} = \begin{bmatrix} c_1\\5c_1 + c_2\\3c_1 + 2c_2 + 6c_3 \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix} \Rightarrow c_1 = c_2 = c_3 = 0.$$