
Math 222 - 009 Rahman Exam II Practice Problems

Skipped problems from first exam

Fall 2007 4a) We first convert this into standard form:

y′ +
ln(t+ 1)

(t− 3)(t+ 3)
y =

2

(t− 3)(t+ 3) cos t
.

The points of discontinuity are: t = 3,−3,−1, π/2 ± nπ. Since we
need to include the initial point, t = 0, our interval of existence is
(−1, π/2).

Spring 2007 1a) We convert to standard form:

y′′ +
et

(t+ 2)(t− 4)
y′ +

ln t

(t+ 2)(t− 4)
y =

t2

(t+ 2)(t− 4)
.

The points of discontinuity are: t = −2, 4, 0. Since we need to
include the initial point, our interval of existence is (0, 4).

Spring 2012 6b) We take the Wronskian,

W =

∣∣∣∣ t−3 y2
−3t−4 y′2

∣∣∣∣ = t−3y′2 + 3t−4y2 = 4t3 ⇒ y′2 + 3t−1y2 = 4t6.

Then,

µ = exp

(
3

∫ t dτ

τ

)
= t3 ⇒ t3y2 =

∫ t

4τ9dτ =
2

5
t10 ⇒ y2 =

2

5
t7.

Spring 2012 6c) Yes, because the Wronskian, W (y1, y2) 6= 0.

1



Fall 2007 Solutions

(1) (a) (i) Because of the absolute value, we must split up the prob-
lem,

t− 1 > 0 : W =

∣∣∣∣ t− 1 2(t− 1)
1 2

∣∣∣∣ = 2(t− 1)− 2(t− 1) = 0

t− 1 < 0 : W =

∣∣∣∣ 1− t 2(t− 1)
−1 2

∣∣∣∣ = −2(t− 1) + 2(t− 1) = 0

Therefore, the solutions are not linearly independent.
(ii) Taking the Wronskian gives,

W =

∣∣∣∣ 3t+ 1 t+ 3
3 1

∣∣∣∣ = 3t+ 1− 3t− 9 = −8 =6= 0.

Therefore, they are linearly independent.
(b) The Wronskian gives,

W =

∣∣∣∣ x g
1 g′

∣∣∣∣ = xg′ − g = x⇒ g′ − g/x = 1.

Then,

µ = exp

(
−
∫ x dξ

ξ

)
=

1

x
⇒ g

x
=

∫ x 1

ξ
dξ = lnx⇒ g = x lnx.

(2) (a) We find the homogeneous solution, r2 − r = 0⇒ r = 0, 1, then
yc = c1 + c2e

t. Our particular solution is,

yp = Atet+Bt2+Ct⇒ y′p = Atet+Aet+2Bt+C ⇒ y′′p = Atet+2Aet+2B.

Plugging this into the ODE gives,

�
��Atet+�2Ae

t+2B����−Atet���−Aet−2Bt−C = 2et−1−t⇒ A = 2, B =
1

2
, C = 2.

Then the particular solution is,

yp = 2tet +
1

2
t2 + 2t.

(b) The general solution is,

y = c1 + c2e
t + 2tet +

1

2
t2 + 2t.



(3) (a) Let y = u(x)e−x.

Short cut: First convert the equation into standard form,

y′′ +
x− 1

x
y′ − 1

x
y = 0.

Now use the formula we derived in class:

y1u
′′+(2y′1+p(x)y1)u

′ = e−xu′′+

(
−2e−x +

x− 1

x
e−x
)
u′ = 0⇒ u′′−x+ 1

x
u′ = 0.

Not short cut: y′ = u′e−x− ue−x and y′′ = u′′e−x− 2u′e−x +
ue−x. Plugging into the ODE gives,

u′′xe−x − 2u′xe−x +����
uxe−x + u′xe−x�����−uxe−x − u′e−x +���ue−x����−ue−x = u′′xe−x − u′xe−x − u′e−x = 0

⇒ xu′′ − (x+ 1)u′ = 0⇒ u′′ − x+ 1

x
u′ = 0.

Using either way you will get the equation u′′−[(x+1)/x]u′ = 0.
Now, let v = u′, then,

v′ =
x+ 1

x
v ⇒

∫
dv

v
=

∫ (
1 +

1

x

)
dx⇒ ln v = x+ lnx+ C0 ⇒ v = kxex

⇒ u = k

∫
xexdx = k(x− 1)ex + C1 ⇒ y = k(x− 1) + C1e

−x.

Then, y2 = x− 1.
(b) Notice here we can extract the roots: r = 1, 1,−1 + 2i,−1− 2i,

then (r − 1)2(r + 1 + 2i)(r + 1 − 2i) = r4 + 2r2 − 8r + 5, then
our equation is,

y(4) + 2y′′ − 8y′ + 5y = 0.

(4) To make life easier I am going to divide through by 2,

y′′ + 2y′ + y =
1

2t
e−t ⇒ r2 + 2r + 1 = (r + 1)2 = 0⇒ yc = c1e

−t + c2te
−t.

So, y1 = e−t and y2 = te−t. Recall, for variation of parameters we
set yp = u(t)yc and plug it into the ODE, which gives

y = −y1
∫

y2f(t)

W (y1, y2)
dt+ y2

∫
y1f(t)

W (y1, y2)
dt.

Now we take the Wronskian,

W (y1, y2) =

∣∣∣∣ e−t te−t

−e−t e−t − te−t
∣∣∣∣ = e−2t.



Calculating the individual integrals gives,∫
y2f(t)

W (y1, y2)
dt =

∫
(�t��e
−t) (��e−t/2�t)

�
��e−2t

dt =
1

2
t+ c3.

∫
y1f(t)

W (y1, y2)
dt =

∫
(��e−t) (��e−t/2t)

���e−2t
dt =

1

2
ln t+ c4.

Then we get,

y = −1

2
te−t − c3e−t +

1

2
te−t ln t+ c4te

−t = c5te
−t − c3e−t +

1

2
te−t ln t.

Then the particular solution is,

yp =
1

2
te−t ln t.

(5) We first find the homogeneous solution,

r4+2r3+2r2 = r2(r2+2r+2) = 0⇒ r =
1

2
(−2±

√
−4) = −1±i⇒ yc = c1+c2t+e

−t(c3 cos t+c4 sin t).

Then, the particular solution is,

yp = (At+B)e−t + te−t(D cos t+ E sin t) + Fet.

(6) We find the roots,

r3−r2−r+1 = r2(r−1)−(r−1) = (r−1)(r2−1) = (r+1)(r−1)2 = 0⇒ r = −1, 1.

Then we get the general solution,

y = (c1+c2t)e
t+c3e

−t ⇒ y′ = c2e
t+(c1+c2t)e

t−c3e−t ⇒ y′′ = 2c2e
t+(c1+c2t)e

t+c3e
−t.

Now we plug in the initial conditions, y(0) = c1 + c3 = 2 ⇒ c3 =
2 − c1, y

′(0) = c1 + c2 − c3 = −1 ⇒ 2c1 + c2 = 1, and y′′(0) =
2c2 + c1 + c3 = 0⇒ 2c2 = −2, then we get c2 = −1, c1 = 1, c3 = 1,
then our solution is,

y = (1− t)et − e−t.



Spring 2012 Solutions

(1) (a) We have

r2 + 2r + 17 = 0⇒ r =
1

2
(−2±

√
−4− 4 · 17) = −1±

√
−16 = −1± i4.

This gives us a general solution of,

y = e−t(A cos 4t+B sin 4t).

(b) We have,

4r2 + 4r + 1 = (2r + 1)2 = 0⇒ y = (c1 + c2t)e
−t/2.

(2) It’s easy to verify that this is a solution. For the other solution let
y = vy1. Yes, I know I used “u” for the 2007 problem, just go with
it, it’s the same thing.

Short cut: We need to convert into standard form,

y′′ +
1

t
y′ − 1

t2
y = 0.

Now we employ our formula,

y1v
′′ + (2y′1 + py1)v

′ = tv′′ + (2 + 1)v′ ⇒ v′′ = −3

t
v′.

Not short cut: y′ = tv′ + v and y′′ = tv′′ + 2v′, then

t3v′′ + 2t2v′ + t2v′ +��tv���−vt = t3v′′ + 3t2v′ = 0⇒ v′′ = −3

t
v′.

In the end we get the same equation. We let u = v′,

u′ = −3

t
u⇒

∫
du

u
= −

∫
3

t
dt⇒ lnu = −3 ln t+ C0 ⇒ u = k0t

−3

⇒ v = −k0
2
t−2 + C1 ⇒ y = k1

1

t
+ C1t⇒ y2 =

1

t
.

(3) (a) Since there is no damping we have the model, mx′′ + kx = 0.
To find k we have k = F/x = 8lb/2ft = 4lb/ft. And the mass
is m = 8lb/32ft/s2 = 1/4lb · s2/ft. Then our equation becomes,
x′′ + 16x = 0. And we have x(0) = 1, x′(0) = −4 where down
is positive and up is negative, i.e. with gravity and against
gravity. We get the general solution,

r2 + 16 = 0⇒ r = ±i4⇒ x = A cos 4t+B sin 4t.

The initial conditions give, x(0) = A = 1, x′(0) = 4B = −4 ⇒
B = −1. Then our solution is,

x = cos 4t− sin 4t.

(b) R =
√
A2 +B2 =

√
2 and tan δ = B/A = −1/1⇒ δ = −π/4.



(4) We get a general solution of,

r2−2r+17 = 0⇒ r =
1

2
(2±2

√
−16) = 1± i4⇒ y = et(A cos 4t+B sin 4t).

From the first initial condition we get y(π/4) = −A exp(π/4) = 1⇒
A = − exp(−π/4). For the second initial condition, lets first take
the derivative,

y′ = et(A cos 4t+B sin 4t) + et(−4A sin 4t+ 4B cos 4t).

Then, y′(π/4) = −Aeπ/4 − 4Beπ/4 = 1 − 4Beπ/4 = −1 ⇒ B =

e−π/4/2. So our solution is,

y = et−π/4
(

1

2
e−π/4 sin 4t− e−π/4 cos 4t

)
.

(5) (a) We get a general solution of,

r2 − 2r + 2 = 0⇒ r =
1

2
(2± i2) = 1± i⇒ y = et(A cos t+B sin t).

For the fundamental set we have,

y1(0) = A = 1, y′1(0) = A−B = 0⇒ y1 = et cos t−et sin t; y2(0) = A = 0, y′2(0) = A = 1⇒ y2 = et cos t.

(b) The particular solution will be of the form,

yp = (c1 + c2t)e
t + e2t(c3 cos 2t+ c4 sin 2t).

(6) We first convert this into standard form,

y′′ +
t

1− t
y′ − 1

1− t
y = −2(t− 1)e−t.

The Wronskian gives,

W (y1, y2) =

∣∣∣∣ et t
et 1

∣∣∣∣ = et − tet.

And recall our equation,

y = −y1
∫

y2f(t)

W (y1, y2)
dt+ y2

∫
y1f(t)

W (y1, y2)
dt.

(a) We do part b first because we’re smart and know how to do
things better than the book.

−
∫

y2f(t)

W (y1, y2)
dt = −

∫
t[��−2����(t− 1)e−t]

����(1− t)et
dt = −2

∫
te−2tdt =

1

2
e−2t(2t+ 1) + C1,∫

y1f(t)

W (y1, y2)
dt =

∫
��et[��−2����(t− 1)e−t]

����(1− t)et
dt = 2

∫
e−tdt = −2e−t + C2.

Then our solution is,

y =
1

2
e−t(2t+ 1) + C1e

t − 2te−t + C2t = −te−t + C3e
t + C2t.

(b) Then the particular solution is, yp = −te−t.


