
Math 222 - 009 Rahman Week1

1.1 Basic Models and Direction Fields

What is a Differential Equation and why do we study them?
Many things in life ranging from nuclear physics to love affairs involves changes

in on quantity in relation to another. Since we understand rates of change as
“differentials” it is natural to model these phenomena as differential equations.
The book has many good examples, but lets look at an example that’s not in the
book.

Ex: Consider carbon dating. We know that all living things contain C12 and
C14, however when living things die the C14 starts to decay because it is
radioactive. We can model this decay. First let t be the time that has
elapsed since the death of the body. Also, let x(t) be the amount of C14

left after a period of time t. We know the decay is linear, so our rate of
change will be governed by the following equation,

dx

dt
= −kx,

where k is the rate constant. Basically the C14 decay at a rate of kx
[mass/time].

We also discussed direction fields for this problem, which is given bellow.
For the field first calculate dx/dt = 0, called the “equilibrium solution” or
“fixed point”, which is the easiest solution to find. Then after plotting that
slope for the respective x, t values find what the other slopes are for other
relevant x and t values.

The next example is a very important example that appears on exams frequently.

21) a) We want to find the rate at which the amount of chemical is chang-
ing. When we develop models one should always keep track of the
dimensions. It provides you with information and reduces the chance
of making a mistake.
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Now, let x(t) be the amount of chemical in grams at a time t in hours.
We know that the rate will be dx/dt, but to find the model we must
realize that Total Rate = (Rate in) - (Rate out). Notice that (Rate in)
= (.01 g/gal)x(300 gal/h) = 3 g/h, and (Rate out) = (300 gal/h)x(x/(1
Million) g/gal) = (3/1000)x g/h. So, our model becomes,

dx

dt
= 3− (3× 10−4)x.

b) What are they asking for this problem? They want to know if the
amount of the chemical blows up or converges to something. To do
this we look for an equilibrium solution,

dx

dt
= 3− (3× 10−4)x = 0⇒ x = 104.

For the next couple of problems they want us to find the ODE that gives us the
behavior delineated in the problem,

7) a · 3 + b = 0 ⇒ b = −3a, so in general the equation will be y′ = −ay + 3a
since the solutions “approach”.

9) a · 2 + b = 0 ⇒ b = −2a, so in general the equation will be y′ = ay − 2a
since the solutions “diverge from”.

The next problem is to find the direction field.

12) We first find the equilibrium solutions of y′ = −y(5− y), which are y∗ = 0
and y∗ = 5. To find the “stability” of the solutions, which means whether
or not the solution diverges or converges to an equilibrium solution, we
employ the first derivative test. This gives the following direction field,



1.3 Classification of Differential Equations

We discussed the difference between ODEs and PDEs in class. In this course we
only concentrate on ODEs.

Definition 1. The order of an ODE is the order of the highest derivative.

In the previous section we dealt with all first order ODEs. I gave some examples
of higher order ODEs in class, and there are plenty of examples for that in the
book.

Definition 2. Consider the ODE

F (t, y, y′, . . . , y(n)) = 0, (1)

then the ODE is said to be linear if F is a linear function with respect to y, y′, . . . , y(n).

Definition 3. We say an ODE is nonlinear if it is not linear.

Again we did examples of these in class and there are many examples in the
book.

Definition 4. A function y(t) is said to be a solution on (a, b) if for every t ∈ (a, b),
y(t), y′(t), . . . , y(n)(t) exists and satisfies F (t, y, y′, . . . , y(n)) = 0.

Notice, a solution need not be unique. We discussed examples of this in class.
For the next few examples we will verify a certain function is a solution to

the given ODE. For these problems you want to first check the existence of the
derivatives and then plug into the ODE to verify the ODE is satisfied.

7) a) y′1 = y′′1 = et and y′′1 − y1 = et − et = 0.
b) y′2 = sinh t and y′′2 = cosh t, furthermore y′′2 − y2 = cosh t− cosh t = 0.

9) y′ = 3 + 2t and ty′ − y = (3t + 2t2)− (3t + t2) = t2.

10) a) y′1 = 1/3, y′′1 = y′′′1 = y
(4)
1 = 0 and y(4) + 4y′′′ + 3y = 3 · t/3 = t.

b) y′2 = −e−t + 1/3, y′′2 = y(4) = −y′′′ = e−t and y(4) + 4y′′′ + 3y =
e−t − 4e−t + 3e−t + t = t.



2.2 Separable Equations

Separable equations are the easiest equations to solve. This why it’s extremely
important to recognize separable equations. It will save you a lot of work! One
thing we will notice right away is that Autonomous first order ODEs are always
separable.

Definition 5. An ODE is separable if it can be written in the form f(x)dx =
g(y)dy.

For the next few problems we will solve some separable equations.

1) We separate the equation by “moving” y to the left and dx to the right,

ydy = x2dx⇒ 1

2
y2 =

1

3
x3 + C0 ⇒ y = ±

√
2

3
x3 + C1; y 6= 0.

4) We separate the equation by moving 3 + 2y to the left and dx to the right,

(3 + 2y)dy = (3x2 − 1)dx⇒ 3y + y2 = x3 − x + C; y 6= −3

2
.

10) This type of problem is called an “Initial Value Problem” (IVP). The idea
is to use the Initial Value to solve for the constant of integration. First we
separate the problem by moving y to the left and dx to the right,

ydy = (1− 2x)dx⇒ 1

2
y2 = x− x2 + C.

Now, the initial value tells us that y = −2 when x = 1, so if we plug
this into the above equation we get that C = 2, so plugging it back in and
solving for y gives,

y = −
√

2x− 2x2 + 4; y 6= 0.

Notice we only chose the negative branch of the root because the initial
condition starts with negative for the y value and we know that y 6= 0 so
the solution can’t magically cross into the positive branch, so we must stay
on the negative branch for all time.


