
Math 222 - 009 Rahman Week2

2.1 Linear Equations; Method of Integration Factor

Consider the ODE dy
dx −

y
x + f(x)

x = 0. This is clearly not separable.

Now consider the ODE t2 dxdt + 2xt = t. This too is not separable, but we can

make it separable by employing a small trick. Notice that t2 dxdt + 2xt = d
dt (xt

2), so

the ODE becomes, d
dt (xt

2) = t, which is separable. This is what is referred to as
an “exact ODE”. So we get,

d

dt
(xt2) = t⇒ d(xt2) = tdt⇒

∫
d(xt2) =

∫
tdt⇒ xt2 =

1

2
t2+C ⇒ x =

1

2
+Ct−2.

This is the idea. If we encounter an equation that isn’t separable we need to
change it in some way that makes it separable.

Lets look at the first equation again and write it in differential form, i.e.

dy

dx
− y

x
+
f(x)

x
= 0⇒ xdy − ydx+ f(x)dx = 0.

Notice, that xdy − ydx is almost quotient rule, we just need to finish the denomi-
nator, which we notice should be x2, so let’s multiply through by 1/x2,

xdy − ydx
x2

+
f(x)

x2
dx = 0⇒ d

(y
x

)
= −f(x)

x2
dx⇒

∫
d
(y
x

)
= −

∫
f(x)

x2
dx

⇒ y

x
= −

∫
f(x)

x2
dx⇒ y = −x

∫
f(x)

x2
dx.

This is called the method of “integrating factors”, where 1/x2 is called the “in-
tegrating factor”, which are delineated in the following definition.

Definition 1. Consider an ODE of the form

dy

dx
+ p(x)y = g(x). (1)

We call µ(x) an integrating factor if

µ(x)

[
dy

dx
+ p(x)y = g(x)

]
is an exact ODE, i.e.

µ(x)

[
dy

dx
+ p(x)y = g(x)

]
⇔ d(µ(x)y) = µ(x)g(x)dx. (2)

All we need to do now is figure out what µ(x) is in general, but fortunately
Leibniz already did that for us,

µ(x) = exp

(∫ x

p(ξ)dξ

)
. (3)
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In the following examples we use the method of integrating factors to solve our
ODE,

5) The integrating factor is µ = exp
(∫ t−2ds

)
= e−2t. Now, we use our

method to get,

e−2ty = 3

∫
e−tdt = −3

∫
e−tdt = −3e−t + C ⇒ y = −3et + Ce2t.

Now, notice if C > 0, y →∞ as t→∞, and if C ≤ 0, y → −∞ as t→∞.

10) The integrating factor is µ = exp
(∫ t−1/sds

)
= 1/t, then

y

t
=

∫
e−tdt = −e−t + C ⇒ y = te−t + Ct.

Now, notice if C = 0, y → 0 as t→∞, and if C 6= 0, y →∞ as t→∞.

21) The integrating factor is µ = exp
(∫ t−(1/2)ds

)
= e−t/2. Then,

e−t/2y = 2

∫
e−t/2 cos tdt =

4

5
e−t/2(2 sin t− cos t) + C.

We did the integration in class. Know how to do the integration! Then, we
get

y =
4

5
(2 sin t− cos t) + Cet/2.

From the initial condition we get C = a + 4/5. We see that the behavior
of the system changes at C = 0, so a0 = −4/5. Now, when a = −4/5, y
is oscillatory as t → 0, specifically y → 4

5 (2 sin t − cos t). Furthermore, if
a < −4/5, y → −∞, and if a > −4/5, y →∞.

2.3 More Modeling Problems

There hasn’t been any EE problems yet in the book, so lets do one,

Ex: Consider a Resister-Inductor (RL) circuit in series. Let x be the current at
time t. Let V be the voltage across the voltage source, R be the resistance
of the resistor, and L be the inductance of the inductor. Now, the voltage
drop through the resistor is: VR = Rx, and the voltage through the inductor
is VL = Ldx/dt. Now, by Kirchoff’s law, we know that the voltages in a
loop sum up, so Ldx/dt+Rx = V , and in standard form this is,

dx

dt
+
R

L
x =

V

L
.

We can solve this via separation,∫
dx

−Rx/L+ V/L
=

∫
dt⇒ −L

R
ln

(
V

L
− R

L
x

)
= t+ C0 ⇒ ln

(
V

L
− R

L
x

)
= −R

L
t+ C1

⇒ V

L
− R

L
x = exp

(
−R
L
t+ C1

)
= e−Rt/LeC1 = k0e

−Rt/L

⇒ R

L
x =

V

L
− k0e−Rt/L ⇒ x =

V

R
− k1e−Rt/L.

Notice that we could use separation because V was constant, however if
V = V (t), then we would have to use integrating factor.



The next couple of examples are from the book,

3) Notice that there are two processes delineated in the problem. And the
second process starts as soon as the first process ends. So we need to solve
the first problem and then use information from the first problem to solve
the second problem.

Process 1: Let x be the amount of salt in lb at time t min. The rate
in will be (1/2) lb/gal × 2 gal/min = 1 lb/min. And the rate out is x/200
lb/gal × 2 gal/min = x/50 lb/min. Now notice that there is no salt in the
tank when the process starts, so our full IVP becomes,

dx

dt
= 1− x

50
; x(0) = 0.

Now we solve this via separation,∫
dx

1− x/50
=

∫
dt⇒ −50 ln(1− x/50) = t+ C0 ⇒ ln(1− x/50) = −t/50 + C1

⇒ 1− x

50
= k0e

−t/50 ⇒ x = 50− k1e−t/50.

Now, we solve for the constant from the initial condition,

x(0) = 50− k1 − 0⇒ k1 = 50⇒ x = 50
(

1− e−t/50
)
.

Now, since the process is stopped at t = 10 min. we need to calculate the
amount at that time, x(10) = 50

(
1− e−1/5

)
.

Process 2: Now, in order to distinguish this process from the previous
one, let y be the amount of salt in lb at time t min. Notice, no more salt is
entering, so the rate in is zero. The rate out will be the same as before y/50
lb/min. For our initial conditions, notice that where this process begins the
other one had ended, so y(0) = x(10).

dy

dt
= − y

50
; y(0) = 50

(
1− e−1/5

)
.

Again, we solve this via separation,

ln y = − 1

50
t+ C ⇒ y = ke−t/50.

From the initial condition we have,

y(0) = k = 50
(

1− e−1/5
)
⇒ y = 50

(
1− e−1/5

)
e−t/50.

Finally, the process stops after another 10 minutes, so y(10) = 50
(
1− e−1/5

)
e−1/5.



8) For this problem we first realize that every year the bank statement in-
creases by k $ from what the person deposits. However, there is also an
interest being earned, which is on the total amount. So, every year the
increase due to interest is rS $. This means the total rate is going to be,
dS/dt = k + rS. And the initial condition will be S(0) = 0.
(a) We solve this via separation,∫

dS

k + rS
=

∫
dt⇒ 1

r
ln(k+rS) = t+C0 ⇒ ln(k+rS) = rt+C1 ⇒ k+rS = C2e

rt.

From the initial condition we get,

S(0) = 0⇒ C2 = k ⇒ S =
k

r

(
ert − 1

)
.

(b) For this problem we solve for S(40) = 106 with r = .075. Plugging all
these into the equation gives k = (.075× 106)/[exp(.075× 40)− 1].

(c) Plug in the values they give and then ask wolfram alpha to solve it.

3.1 Homogeneous Equations with Constant Coefficients

It should be noted that while this chapter is on second order ODEs, we will
develop the theory for higher order ODEs because the theory is exactly the same!
Let us first go over some definitions we might not know,

Definition 2. An ODE is homogeneous if it is of the form

pn(t)y(n)(t) + pn−1(t)y(n−1)(t) + · · ·+ p2(t)y′′(t) + p1(t)y′(t) + p0(t)y(t) = 0. (4)

So an example of a second order homogeneous ODE would be
p2y
′′ + p1y

′ + p0y = 0.

Definition 3. An ODE is said to be nonhomogeneous if it’s not homogeneous.

An example of a second order nonhomogeneous ODE would be p2y
′′+p1y

′+p0y =
f(t). In this section we will only deal with constant coefficients which mean each
pn(t) = an where a0, a1, . . . , an−1, an are all constants.

Now, we consider a special case of Eq. (4): y′ + ay = 0 We know how to solve
this, we simply use separation to get y = ke−ax. So, we can “guess” that the form of
the solutions for Eq. (4) with constant coefficients will be y = kerx. Now, we plug
this guess in to see what the solutions exactly are. Notice that the nth derivative
is, y(n) = krnerx, so plugging this into (4) with pn(t) = an gives,

ankr
nerx + an−1kr

n−1erx + · · ·+ a2kr
2erx + a1kre

rx + a0ke
rx = 0

⇒ kerx
(
anr

n + an−1r
n−1 + · · ·+ a2r

2 + a1r + a0
)

= 0.

Now, all we have to do is solve the polynomial equation. Since this is an nth
order polynomial, there will be n solutions, i.e. r = r1, r2, . . . , rn−1, rn. Since the
polynomial equation has n solutions, the ODE will also have n solutions, so by
superposition we get,

y = k1e
r1x + k2e

r2x + · · ·+ kn−1e
rn−1x + kne

rnx.

We have just proved a theorem,



Theorem 1. Consider the ODE

any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a2y
′′(x) + a1y

′(x) + a0y(x) = 0. (5)

such that a0, a1, . . . , an−1, an are constants. Then,

y = k1e
r1x + k2e

r2x + · · ·+ kn−1e
rn−1x + kne

rnx, (6)

where k1, k2, . . . , kn−1, kn are constants and r1, r2, . . . , rn−1, rn satisfy the polyno-
mial equation

anr
n + an−1r

n−1 + · · ·+ a2r
2 + a1r + a0 = 0, (7)

only if r1 6= r2 6= · · · 6= rn−1 6= rn.

Definition 4. We call Eq. (7) the characteristic equation of ODE (5), and the
polynomial is called the characteristic polynomial.

Now, lets do a few problems from the book,

1) The characteristic polynomial is r2 + 2r − 3, so

r2 + 2r − 3 = 0⇒ (r + 3)(r − 1) = 0⇒ r = 1,−3⇒ y = c2e
x + c2e

−3x.

7) The characteristic polynomial is r2 − 9r + 9, so

r =
1

2
(9± 3

√
5)⇒ y = c1e

1
2 (9+3

√
5)x + c2e

1
2 (9−3

√
5)x.

12) The characteristic polynomial is r2 + 3r, so

r = 0,−3⇒ y = c1 + c2e
−3x,

and from the initial conditions we get y = −1− e−3x.
18) Here they give us the solution and we have to extract the ODE. Notice that

from the solution we deduce

r = −1

2
,−2⇒ (r +

1

2
)(r + 2) = r2 +

5

2
r + 1 = 0⇒ y′′ +

5

2
y′ + y = 0.

21) This is kind of a silly question, but since there is a similar one on the
homework lets do it. We solve the ODE as per usual,

r2 − r − 2 = (r − 2)(r + 1) = 0⇒ r = −1, 2⇒ y = c1e
−x + c2e

2x.

From the initial condition we have the equations c1+c2 = α and 2c2−c1 = 2,
so 3c2 = α + 2. This means that if α = −2, as t → ∞, y → 0. However,
for the second part of the problem there are no solutions that always blow
up because we have a negative exponential term that will persist.

24) For this problem the ODE itself has the parameter α. This leads to in-
teresting conclusions without even solving, but the easiest most intuitive
way to come to those conclusions will be by solving, even though it is more
tedious and time consuming. We solve the ODE,

r2+(3−α)r−2(α−1) = 0⇒ (r−(α−1))(r+2) = 0⇒ r = −2, α−1⇒ y = c2e
−2x+c2e

(α−1)x.

So, for α < 1, y →∞. If α = 1, y → c2, and if α > 1, and y → ±∞ only if
c2 6= 0.


