
Math 222 - 009 Rahman Week5

3.4 Repeated Roots and Reduction of Order

Repeated Roots: Again consider a second order homogeneous IVP with it’s re-
spective characteristic polynomial equation,

y′′ + by′ + cy = 0, y(0) = A, y′(0) = B; (1)

r2 + br + c = 0; (2)

Then, our roots (also called eigenvalues) are r = 1
2 (−b±

√
b2 − 4c). What if b2−4c =

0? Then, r1,2 = −b/2. If we plug this in as usual we get, y = c1e
−bx/2 + c2e

−bx/2 =

(c1 + c2)e−bx/2. However, this only gives us one constant so there is no way we can
satisfy the two initial conditions. So, we need another solution in addition to the
one we have.

Suppose the “constant” c1 + c2 is not a constant, but rather a function of x, i.e.
y = v(x)e−bx/2. We have to figure out if a v will satisfy our ODE, and if so what
v is it. We want to plug into (1). The derivatives are,

y′ = v′(x)e−bx/2− b

2
e−bx/2v(x)⇒ y′′ = v′′(x)e−bx/2− be−bx/2v′(x) +

b2

4
e−bx/2v(x).

Plugging into the ODE gives,

e−bx/2
(
v′′ + (−b+ b)v′ + (

b2

4
− b2

2
+
b2

4
)

)
= e−bx/2v′′ = 0.

Since exp(−bx/2) can’t be zero, v′′ = 0 ⇒ v′ = c3 ⇒ v = c3x + c4, which gives us
the solution of,

y = (c3x+ c4)e−bx/2.

This is outlined in the following theorem,

Theorem 1. Consider the ODE,

ay′′ + by′ + c = 0. (3)

If the characteristic polynomial has repeated roots, i.e. r1,2 = λ, then the general
solution to (3) is,

y = (c1 + c2x)eλx. (4)

Proof. Clearly (4) is a solution to (3), which we can easily verify. Furthermore,
W (c1e

λx, c2xe
λx) 6= 0, which we calculated in class. �
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Now, lets solve some problems before moving onto the second part of this section.

2) The characteristic equation is 9r2 + 6r + 1 = 0 ⇒ r = −1/3, then our
solution is y = (c1 + c2x) exp(−x/3).

8) As per usual, 16r2 +24r+9 = 0⇒ r = −3/4⇒ y = (c1 +c2x) exp(−3x/4).
12) For this problem we solve the IVP. Our roots are, r2− 6r+ 9 = 0⇒ r = 3.

So, our solution is y = (c1 + c2x) exp(3x). From the initial conditions we
have, y(0) = c1 = 0 and y′(0) = c2 = 2, so our final solution is y = 2xe3x,
so as x→∞, y →∞.

15) Lets only do part d. Solving for the ODE gives, 4r2 + 12r + 9 = 0 ⇒
r = −3/2 ⇒ y = (c1 + c2x) exp(−3x/2). The first initial condition gives,
y(0) = c1 = 1. The other one gives, y′(0) = −3/2 + c2 = b⇒ c2 = b+ 3/2.
So, when b < −3/2 it’s eventually negative, but when b > −3/2 it’s always
positive.

Reduction of Order: The method used earlier is called reduction of order. But,
we’ll see that this is a far more powerful method than it seems. Consider the ODE,

y′′ + p(x)y′ + q(x)y = 0. (5)

Suppose we know one solution of the ODE, call it y1. Then we “guess” the form of
the full solution as y = v(x)y1(x). First we find the derivatives,

y′ = y′1v + v′y1 ⇒ y′′ = y′′1 v + 2v′y′1 + v′′y1.

Plugging this in and grouping the respective v’s gives us,

y′′1 v + 2v′y′1 + v′′y1 + py′1v + pv′y1 + qy1v = y1v
′′ + (2y′1 + py1)v′ + (

���
��

��:0
y′′1 + py′1 + qy1)v

= y1v
′′ + (2y′1 + py1)v′ = 0.

And set u = v′. Then we get,

y1u
′+(2y′1 + py1)u = 0⇒ u′ +

2y′1 + py1
y1

u = 0⇒
∫
du

u
= −

∫
dy′1 + py1

y1
dx

⇒ lnu = −
∫
dy′1 + py1

y1
dx⇒ u = exp

(
−
∫
dy′1 + py1

y1
dx

)
⇒ v =

∫
exp

(
−
∫
dy′1 + py1

y1
dx

)



I shall refrain from putting this into theorem form for the sake of clarity and
brevity. Instead lets do some problems,

27) Let y = vy1 ⇒ x(v′′y1 + 2v′y′1 + vy′′1 )− (v′y1 + vy′1) + 4x3y1 = 0. Grouping
all the v, v′, and v′′ terms gives,

xy1v
′′ + 2xy′1v

′ − y1v′ + (
���

���
���:0

xy′′1 − y′1 + 4x3y1)v = xy1v
′′ + 2xy′1v

′ − y1v′ = 0.

Set u = v′, then

u′ +

(
2y′1
y1
− 1

x

)
u = 0⇒ u′ =

(
1

x
− 4x cosx2

sinx2

)
u =

(
1

x
− 4x cotx2

)
u

⇒ lnu = lnx− 4

∫
x cotx2dx = lnx− ln sin2 x2 + C ⇒ u = k

x

sin2 x2

⇒ v = k

∫
xdx

sin2 x2
= k1 cotx2 + C ⇒ y = k1 cosx2 + C sinx2.

29) Again we let y = vy1 ⇒ x2(v′′y1 + 2v′y′1 + vy′′1 ) − (x − 0.1875)vy1 = 0.
Grouping gives,

x2y1v
′′ + 2x2y′1v

′ + [
��

���
���

���:0

x2y′′1 − (x− 0.1875)y1]v = x2y1v
′′ + 2x2y′1v

′ = 0.

Set u = v′, then

u′ = −2
y′1
y1
u =

(
−2√
x
− 1

2x

)
u⇒ lnu = −2

∫
x−1/2dx+

1

2

∫
dx

x
= −4

√
x− 1

2
lnx+ C

⇒ u =
k√
x
e−4
√
x ⇒ v = ke−4

√
x + C ⇒ y = kx1/4e−2

√
x + Cx1/4e2

√
x.

3.5 Nonhomogeneous Equations; Undetermined Coefficients

Consider the nonhomogeneous ODE,

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0 = f(x). (6)

Notice that our usual solution wont work, but maybe it’s part of the solution.
Suppose yp is the solution of (6) that is linear independent with the usual solution
to the homogeneous problem. Let y be the general solution of (6). Lets plug in
yc = y − yp in (6), then we get that yc is a solution to

any
(n) + an−1y

(n−1) + · · ·+ a2y
′′ + a1y

′ + a0 = 0. (7)

So, in fact yc is our usual homogeneous solution, so y = yc + yp, where yc is the
homogeneous part of the solution and yp is the purely nonhomogeneous part of the
solution.

Definition 1. The characteristic solution, yc is the general solution of (7) and the
particular solution, yp is the additional solution to (6).



Case1: No term in f(x) is the same as any term in yc. Then, yp is a linear
combination of terms of f(x) and their derivatives.

Ex: f1(x) = xn ⇒ y1p = Anx
n + An−1x

n−1 + · · · + A1x + A0. If our f is a
polynomial, the particular solution will be of the form of the most general
polynomial of order of that of the polynomial in f .

Ex: f2(x) = emx ⇒ y2p = kemx. This one is easy.
Ex: f3(x) = cos(mx) or sin(mx) ⇒ y3p = A cos(mx) + B sin(mx). If we have

sine or cosine our particular solution will be a linear combination of sines
and cosines.

Ex: f(x) = f1(x) + f2(x) + f3(x)⇒ yp = y1p + y2p + y3p . If we have a combina-
tion of these simple examples then we just combine all of their respective
particular solutions.

Ex: f(x) = f1(x)f2(x)f3(x) ⇒ yp = y1py2py3p . We do the same sort of thing
with products.

Case2: f(x) contains terms that are xn times terms in yc, i.e. if u(x) is a term of
yc and f(x) contains xnu(x). Then yp is as usual but multiply by “x”.

Ex: Consider yc = g(x) + emx and f(x) = l(x) + xnemx, where we don’t care
about g(x) and l(x), we are just thinking of them as place holders. Then
our particular solution is yp = h(x) + (Anx

n+1 +An−1x
n + · · ·+A0x)emx.

Ex: Consider a similar case except with sine, also equivalently would be a case
with cosine. yc = g(x) + sin(mx) and f(x) = l(x)xn sin(mx), then our par-
ticular solution is, yp = h(x)+(Anx

n+1+An−1x
n+ · · ·+A0x)(B cos(mx)+

C sin(mx)).

Case3: If yc contains repeated roots with the highest being of order λ, i.e. xλ,
and f(x) contains terms xn times the repeated roots terms. Then multiply out by
xλ+1.

Ex: yc = g(x) + xλ + · · · + emx and f(x) = l(x) + xnemx, then our particular
solution is yp = h(x) + xλ+1(Anx

n +An−1x
n−1 + · · ·+A1x+A0)emx.

The idea for the repeated cases is to get rid of all the repeats while preserving
the same amount of constants.

The cases that are delineated above are very general cases. Bellow I have set up
a table of cases 2 and 3 that we will come across most often in this class. However,
you may get a problem that is of a more general set up, so don’t use the table as a
crutch.

Case Characteristic solution Repeat Particular solution form

Case2
yc = c1e

r1x + c2e
r2x f(x) = xner1x yp = x(Anx

n + · · ·+A1x+A0)er1x

yc = eξx(A cos(θx) +B sin(θx)) f(x) = xneξx cos(θx) yp = x(Anx
n + · · ·+A0)eξx cos(θx)

Case3 yc = (c1 + c2x)eλx f(x) = xneλx yp = x2(Anx
n + · · ·+A1x+A0)eλx



It can be tricky to figure out what yp has to be at first, but hopefully some
practice problems will help us,

6) We solve for the characteristic solution first, r2 + 2r = r(r + 2) = 0 ⇒
r = 0,−2, so yc = c1 + c2e

−2t, and f(t) = 3 + 4 sin 2t. Notice the 3
repeats with c1. Our initial guess for the particular solution would be
yp = A+B cos 2t+C sin 2t, but this would be incorrect because we already
have a lone constant in our characteristic solution, so our actual particular
solution is yp = At+B cos 2t+C sin 2t. Plugging this into the ODE gives,

4(C −B) cos 2t− 4(B + C) sin 2t+ 2A = 3 + 4 sin 2t

Matching terms gives 2A = 3⇒ A = 3/2 readily. From the cosine term we
get 4(C−B) = 0⇒ C = B because there is no cosine term on the right hand
side. From the sine terms we have −4(B+C) = 8B = 4⇒ C = B = −1/2,
so our particular solution is, yp = 3

2 t−
1
2 cos 2t− 1

2 sin 2t. Then our general
solution is,

y = c1 + c2e
−2t +

3

2
t− 1

2
cos 2t− 1

2
sin 2t.

7) As usual we find the homogeneous solution first, r2 + 9 = 0 ⇒ r = ±3i,
then yc = A cos 3t+B sin 3t, and f(t) = t2e3t + 6. There are no repeats, so
we just proceed as usual, yp = (At2 + Bt + C)e3t + D. Plugging this into
the ODE gives,

2Ae3t + 6(2At+B)e3t + 18(At2 +Bt+ C)e3t + 9D = t2e3t + 6,

⇒ 18At2e3t + (12A+ 18B)te3t + (2A+ 6B + 18C)e3t + 9D = t2e3t + 6.

Matching the terms readily gives 9D = 6⇒ D = 2/3. From the t2e3t we get
18A = 1⇒ A = 1/18. The other terms are zero so we get, 12/18 + 18B =
0⇒ B = −1/27, and 1/9+2/9+18C = 0⇒ C = 1/162. So, our particular
solution is yp = (t2/18− t/27 + 1/162)e3t + 2/3. Then our general solution
is,

y = A cos 3t+B sin 3t+

(
1

18
t2 − 1

27
t+

1

162

)
e3t +

2

3
.



18) Again, r2 − 2r − 3 = (r − 3)(r + 1) = 0 ⇒ r = 3,−1. This gives us a
characteristic equation of yc = c1e

3t + c2e
−t, and f(t) = 3te2t. So, there

are no repeats and we proceed as usual, yp = (At + B)e2t. Plugging this
into the ODE gives,

4Ae2t+((((
((4(At+B)e2t−2Ae2t−(((((

(
4(At+B)e2t−3(At+B)e2t = −3Ate2t+(2A−3B)e2t = 3te2t.

Matching the te2t terms gives −3A = 3⇒ A = −1. The other term is zero
so we get −2− 3B = 0⇒ B = −2/3. This give us yp = (−t− 2/3)e2t, then
our general solution is

y = c1e
3t + c2e

−t +

(
−t− 2

3

)
e2t.

The first initial condition gives, y(0) = c1 + c2 − 2/3 = 1⇒ c1 + c2 = 5/3,
and the second gives, y′(0) = 3c1 − c2 − 1 − 4/3 = 0 ⇒ 3c1 − c2 = 7/3.
Now we add the equations to get, 4c1 = 4 ⇒ c1 = 1 ⇒ c2 = 2/3. Then,
our solution is,

y = e3t +
2

3
e−t +

(
−t− 2

3

)
e2t.

24) For this problem we only need the form of the particular solution. In order
to get that we still have to compute the characteristic solution, r2+2r+2 =
0⇒ r = −1± i, which gives yc = e−t(c1 sin t+ c2 cos t). From f(x) we can
guess a particular solution of

yp = e−t[A+B cos t+ C sin t+ (D2t
2 +D1t+D0) cos t+ (E2t

2 + E1t+ E0) sin t]

= e−t[A+ (B2t
2 +B1t+B0) cos t+ (C2t

2 + C1t+ C0) sin t].

However, this would be wrong due to the repeats. So, we need to multiply
out by t for the cosine and sine terms,

yp = e−t[A+ t(B2t
2 +B1t+B0) cos t+ t(C2t

2 + C1t+ C0) sin t]


