
Math 222 - 009 Rahman Week6

3.6 Variation of Parameters

The book does a good job at developing the theory for variation for parameters,
so I will derive this in a very similar manner.

Consider the ODE,

y′′ + p(x)y′ + q(x)y = f(x), (1)

and suppose we have the following characteristic solution,

yc = c1y1 + c2y2. (2)

What if for the full solution to (1) we can think of the “constants” c1 and c2 as
functions, i.e. y = u1(x)y1 +u2(x)y2. We use this as an ansatz and plug it into the
ODE. for the derivative we get,

y′ = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2.

We only want one derivative in our final equation so lets force

u′1y1 + u′2y2 = 0, (3)

so y′ = u1y
′
1 + u2y

′
2, then

y′′ = u′1y
′
1 + u′2y

′
2 + u1y

′′
1 + u2y

′′
2 .

Plugging into (1) gives,

u′1y
′
1 + u′2y

′
2 + [u1y

′′
1 + u2y

′′
2 + p(u1y

′
1 + u2y

′
2) + q(u1y1 + u2y2)] = f(x)

Notice the terms in brackets cancel because it is exactly the homogeneous ODE.
This gives us our second equation,

u′1y
′
1 + u′2y

′
2 = f(x). (4)

From (3) we get u′1 = −u2′y2/y1. We plug this into (4) in order to get an expression
for u2,

−u′2y′1
y2
y1

+u′2y
′
2 = f(x)⇒ −u′2y′1y2+u′2y

′
2y1 = f(x)y1 ⇒ u′2 =

f(x)y1
y′2y1 − y′1y2

=
f(x)y1
W (y1, y2)

.

Now we plug this into our expression for u1 to get,

u′1 =
f(x)y2
W (y1, y2)

.

Then we integrate to get,

u1 = −
∫

f(x)y2
W (y1, y2)

dx, (5)

u2 =

∫
f(x)y1
W (y1, y2)

dx. (6)

Then plugging back into our original anzats gives us,

y = −y1
∫

f(x)y2
W (y1, y2)

dx+ y2

∫
f(x)y1
W (y1, y2)

dx.
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Theorem 1. Suppose the ODE (1) has a unique solution on I open. Assume it
has the characteristic solution (2). Then,

y = −y1
∫

f(x)y2
W (y1, y2)

dx+ y2

∫
f(x)y1
W (y1, y2)

dx (7)

is the general solution.

Now, we could just use this theorem for all our problems. The only downfall is
that we will have to memorize this formula. So, just in case you forget the formula,
do know how to work out the derivation, and try to use the derivation on specific
problems.

Without further ado, lets work out some problems,

2) We go straight to the polynomial, r2 − r − 2 = (r − 2)(r + 1) = 0, so
yc = c1e

2t + c2e
−t, so y1 = e2t and y2 = e−t. First we calculate the

Wronskian,

W =

∣∣∣∣ e2t e−t

2e2t −e−t
∣∣∣∣ = −3et.

Now, lets compute our two integrals separately,∫
f(t)y2

W (y1, y2)
dt =

∫
e−t · 2e−t

−3et
dt = −2

3

∫
e−3tdt = −2

9
e−3t + c3.

and ∫
f(x)y1
W (y1, y2)

dx =

∫
e2t · 2e−t

−3et
dt =

2

3

∫
dt = −2

3
t+ c4.

Then plugging this back into (7) gives,

y = −e2t
[
−2

9
e−3t + c3

]
+e−t

[
2

3
t+ c4

]
=

2

9
e−t−2

3
te−t−c3e2t+c4e−t = c5e

−t−2

3
te−t−c3e2t.

10) Again we have, r2−2r+ 1 = (r−1)2 = 0, so yc = c1e
t+ c2te

t, then y1 = et

and y2 = tet, then we compute the Wronskian,

W =

∣∣∣∣ et tet

et et + tet

∣∣∣∣ = e2t.

Now, we compute the two integrals,∫
f(t)y2

W (y1, y2)
dt =

∫
tet · et/(1 + t2)

e2t
dt =

∫
tdt

1 + t2
=

1

2
ln(1 + t2) + c3.

and∫
f(t)y1

W (y1, y2)
dt =

∫
et · et/(1 + t2)

e2t
dt =

∫
dt

1 + t2
= tan−1 t+ c4.

Then plugging into (7) gives,

y = −1

2
et ln(1 + t2)− c3et + tet tan−1 t+ c4te

t.



11) Again, r2 − 5r + 6 = (r − 3)(r − 2) = 0, so we get yc = c1e
3t + c2e

2t, then
y1 = e3t and y2 = e2t. Taking the Wronskian gives,

W =

∣∣∣∣ e3t e2t
3e3t 2e2t

∣∣∣∣ = −e5t.

Then we plug it in to (7),

y = −e3t
∫
e2tg(t)

−e5t
dt+ e2t

∫
e3tg(t)

−e5t
dt = e3t

∫
e−3tg(t)dt− e2t

∫
e−2tg(t)dt

Another way to write this, which will be the usual way in the book is,

y = c1e
3t + c2e

2t + e3t
∫ t

e−3τg(τ)dτ − e2t
∫ t

e−2τg(τ)dτ

14) We must first convert this into standard form,

y′′ − t+ 2

t
y′ +

t+ 2

t2
y = 2t.

First we fine the Wronskian,

W =

∣∣∣∣ t tet

1 tet + et

∣∣∣∣ = t2et

Then we plug in to (7) to get,

y = −t
∫
tet · 2t
t2et

dt+tet
∫
t · 2t
t2et

dt = −t
∫

2dt+tet
∫

2e−tdt = −2t2+c1t−2t+c2te
t.

So the particular solution is,

yp = −2t2 − 2t.

20) We convert this to standard form,

y′′ +
1

x
y′ +

x2 − 0.25

x2
y =

g(x)

x2
.

We find the Wronskian first,

W =

∣∣∣∣ x−1/2 sinx x−1/2 cosx
− 1

2x
−3/2 sinx+ x−1/2 cosx − 1

2x
−3/2 cosx− x−1/2 sinx

∣∣∣∣ = − 1

x

Then plugging into (7) gives,

y = −x−1/2 sinx

∫
x−1/2 cosxg(x)/x2

−1/x
dx+ x−1/2 cosx

∫
x−1/2 sinxg(x)/x2

−1/x
dx

= x−1/2 sinx

∫
cosxg(x)

x
√
x

dx− x−1/2 cosx

∫
sinxg(x)

x
√
x

dx

Then the particular solution is,

yp = x−1/2 sinx

∫ x cos ξg(ξ)

ξ
√
ξ

dξ − x−1/2 cosx

∫ x sin ξg(ξ)

ξ
√
ξ

dξ



3.7 Applications: Mechanical and Electrical Oscillators

These are the sort of examples we will deal with in our Chaos course, except of
course the Chaos example are going to be much more difficult, and with forcing
involved.

Consider a mass on a weightless-hanging spring. Gravity balances with the
spring force for that particular distance, so we can neglect it. All we need are the
additional forces on the system.

The total force on the entire system is mx′′. The spring force is kx, and the
retarding force is γx′. Any external force is neglected in this section, but if it were
not it would just be F (t). Applying Newton’s laws gives,

mx′′ = −kx− γx′ ⇒ mx′′ + γx′ + kx = 0;x(0) = x0, x
′(0) = v0. (8)

We also have to be aware of the units, m = [mass], γ = [mass/time], and k =
[mass/time2].

We look at a few cases.

Undamped: Here γ = 0, so our equation becomes,

mx′′ + kx = 0. (9)

This has an easy solution,

x = A cos

√
k

m
t+B sin

√
k

m
t. (10)

Here ω =
√
k/m is called the natural frequency. Now, lets think of this in the

complex plane and try to determine some important quantities. Think of ξ being
the x-axis and η being the y-axis in the complex plane. And define the unit vectors

to be ξ̂ = cosωt and η̂ = sinωt. Then we can draw a triangle where the side
on the x-axis is of length A and the side on the y-axis is of length B. Also let
the angle adjacent to the x-axis be called φ. Then we have that the hypotenuse,
R =

√
A2 +B2, which is the amplitude of oscillation, and the angle φ called the

phase, is given by tanφ = B/A. We can also use this triangle to simplify our
equation. Notice that A = R cosφ and B = R sinφ. Then, by using trig identities,

x = R cosφ cosωt+B sinφ sinωt = R cos(ωt− φ).

Also notice that x(0) = R cosφ. When does x = R cosφ again? We can show that

this happens at every addition of 2π/ω, so our period is T = 2π/ω = 2π
√
m/k.

Damped: Now we explore what happens when we have damping. This gives rise
to three cases. Here we will have the full ODE, so our roots of the characteristic
polynomial is,

r =
1

2m

(
−γ ±

√
γ2 − 4mk

)
.

If γ2 − 4mk > 0, our solution becomes x = c1e
r1x + c2e

r2x, and this is called
overdamped, because it goes to zero very fast.

If γ2 − 4mk = 0, our solution becomes x = (c1 + c2t)e
rt, where r is a repeated

root, and this is called critically damped because after some critical point it damps
to zero very fast.



If γ2 − 4mk < 0, our solution becomes x = eξt(A cos θt+B sin θt). This is a bit
of a special case. If ξ = −γ/2m is large it acts like the preceding case, if it’s small
then we get a special type of behavior called underdamped motion. This is because
the system will oscillate while damping out. Here θ is called the quasi frequency
and θ/ω < 1. Similarly, Td = 2π/θ is called the quasi period and Td/T > 1.

These cases are outlined in the following handy-dandy table,

Type Criterion Solution
Undamped γ = 0 x = A cosωt+B sinωt

Overdamped γ2 − 4mk > 0 x = c1e
r1x + c2e

r2x

Critically Damped γ2 − 4mk = 0 x = (c1 + c2t)e
rt

Underdamped γ2 − 4mk < 0 x = eξt(A cos θt+B sin θt)

The next table outlines oscillatory behavior,

Type Criterion Solution Frequency Period

Undamped γ = 0 x = A cosωt+B sinωt ω =
√
k/m T = 2π/ω

Underdamped γ2 − 4mk < 0 x = eξt(A cos θt+B sin θt) θ = (
√

4mk − γ2)/2γ Td = 2π/θ

Now lets do a couple of spring problems,

4) We calculate the amplitude in the usual manner, R =
√

4 + 9 =
√

13. And
the phase, which they call δ and we call φ, tan δ = −2/ − 3, which means
we are in the third quadrant, so δ = tan−1

(
2
3

)
+ π. Finally, the frequency

is ω = π.
6) Here we must first calculate the spring constant. Recall Hooke’s law, F =

kx ⇒ k = F/x = (.1)(9.8)/.05 = 19.6N/m. Since there is no retarding
force our ODE is,

mx′′ + kx = 0; x(0) = 0, x′(0) = .1,

which has a general solution of,

x = A cos

√
k

m
t+B sin

√
k

m
= A cos 14t+B sin 14t.

From the initial conditions we get, A = 0, 14B = .1 ⇒ B = 1/140. This
part is done incorrectly in the book because they forgot to be consistent
with the units. So, our solution is,

x =
1

140
sin 14t.

This means that the time of return is t1 = π/14, and the period is T = π/7.



We can look at another application: The RLC circuit. Earlier in the semester we
studied the RL circuit, which had an ODE of LdI/dt+RI = V . Now, for the RLC

circuit, the voltage across the conductor is, Q(t)/C = (1/C)
∫ t
t0
I(τ)dτ + VC(t0),

then our ODE becomes,

L
dI

dt
+RI +

1

C

∫ t

t0

I(τ)dτ + VC(t0) = V. (11)

Now, we can differentiate through to get,

LI ′′ +RI ′ +
1

C
I = V ′; I(t0) = I0, I

′
0(t0) =

1

L
(V (t0)−RI0 −Q0/C). (12)

However recall, I = dQ/dt, so we can plug this into (11) to get,

LQ′′ +RQ′ +
1

C
Q = V ; Q(t0) = Q0, Q

′(t0) = I(t0) = I0. (13)

Notice that the equations are just like the spring equations.
Here is an example of an electrical problem,

8) For this problem we use (13). We discharge the capacitor without incoming
voltage and there is no resistor, so our equation is, LQ′′ + Q/C = 0, but
since L = 1, it’s easier just to plug this in straight away, so Q′′+Q/C = 0.

Solving the roots for this gives, r2 + 1/C = 0, then r = ±i
√

1/C, then our
general solution is,

Q = A cos
√

1/Ct+B sin
√

1/Ct.

Plugging in the initial conditions gives, Q(0) = A = 10−6, and Q′(0) =

B
√

1/C = 0⇒ B = 0. So, our solution is,

Q(t) = 10−6 cos(2× 103)t.

Now, lets do a few more theoretical problems for oscillators in general,

13) Notice, for this problem ω =
√

k
m = 1. Now, we solve the full ODE, which

gives r2 + γr + 1 = 0, which gives us roots of, r = 1
2 (−γ) ±

√
γ2 − 4 =

1
2 (−γ)± i

√
4− γ2. This means that θ =

√
4− γ2/2.

19) Lets first look at the more difficult case: overdamped. Then our solution is
x = c1e

r1t + c2e
r2t; r1,2 ≤ 0. Now, if we want to see when the mass crosses

the origin we set x = c1e
r1t + c2e

r2t = 0, which means

c1e
r1t = −c2er2t ⇒ −

c1
c2

= e(r2−r1)t ⇒ ln

(
−c1
c2

)
= (r2−r1)t⇒ t =

1

r2 − r1
ln

(
−c1
c2

)
.

This shows that the mass crosses the origin at most once.
Now, lets do the easier case: critically damped. Then our solution is

x = (c1 + c2t)e
rt, so if x = 0, c1 + c2t = 0⇒ t = −c1/c2, which leads us to

our conclusion.


