
Math 222 - 009 Rahman Week3/4

2.7 Euler’s Method

Numerical solutions to ODEs are all about approximating a derivative and using
that to approximate the solution. What is the definition of the derivative and
how do we approximate it? Think back to Calc I, we derived the definition of the
derivative by using a slope and watching what happens when ∆t→ 0. Lets use the
formula for slope again for first order ordinary differential equations,

y′(t) = f(t, y)⇒ f(t, y) ≈ ∆y

∆t
=
y − y0
t− t0

.

Now lets evaluate f at t1, y1, then we get,

f(t1, y1) ≈ y1 − y0
t1 − t0

⇒ y1 − y0 ≈ (t1 − t0)f(t0, y0)⇒ y1 ≈ y0 + (t1 − t0)f(t0, y0).

Look at that! We just developed a formula to approximate y at t1 by using the
information we had for the system at t0. If we can approximate the data at t1 by
using the previous time (i.e. t0), why can’t we do this for any time? That is we
can approximate y at tn+1 via the formula, yn+1 ≈ yn+ ∆tf(tn, yn). The standard
way to write this however is with, h = ∆t, basically a renaming and we usually
use y0 = y(t0), i.e. the initial condition, and we also drop the ≈ and us =. So our
general formula is,

yn+1 = yn + hf(tn, yn); y0 = y(t0). (1)

When debugging your codes use the following example, and make sure your
values are close to mine. Your values might be ever so slightly off, but not more
than say .0001.

(1) f(t, y) = 3 + t− y, which gives us the equation yn+1 = yn +h · (3 + tn− yn)
where y0 = 1.
(a) Here we have h = 0.1, so we have the following t’s. We get them just

by starting at t0 and incrementing. t0 = 0, t1 = 0.1, t2 = 0.2, t3 = 0.3,
t4 = 0.4. Then we have, y1 = y0+h·(3+t0−y0) = 1+(0.1)(3+0−1) =
1.2, y2 = y1 +h · (3+ t1−y1) = 1.39, y3 = y2 +h · (3+ t2−y2) = 1.571,
and y4 = y3 + h · (3 + t3 − y3) = 1.7439. Lets put this in a table to
make it look pretty,
n 0 1 2 3 4
tn 0 0.1 0.2 0.3 0.4
yn 1 1.2 1.39 1.571 1.7439

(b) Hopefully part a gave you a good idea of how we do these problems,
so I’ll just give the table of values I received when running my code
on matlab (remember h = 0.05):
n 0 1 2 3 4 5 6 7 8
tn 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
yn 1 1.1 1.1975 1.2926 1.3855 1.4762 1.5649 1.6517 1.7366
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(c) Here h = 0.025,
n 0 1 2 3 4 5 6 7 8
t 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
y 1 1.05 1.0994 1.1481 1.1963 1.2439 1.2909 1.3374 1.3833

n 9 10 11 12 13 14 15 16
t 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4
y 1.4288 1.4737 1.5181 1.562 1.6055 1.6484 1.6910 1.7331

(d) Next we solve the equation via integrating factors to get y = 2+t−e−t,
and calculating the points gives us the following comparison,

h t = 0.1 0.2 0.3 0.4
0.1 y(t) = 1.2 1.39 1.571 1.7439
0.05 y(t) = 1.1975 1.3855 1.5649 1.7366
0.025 y(t) = 1.1963 1.3833 1.562 1.7331
Exact y(t) = 1.19516 1.38127 1.55918 1.72968

3.2 Existence and Uniqueness and the Wronskian

Last time we discussed ODEs of the form,

pn(x)y(n)(x) + pn−1y
(n−1)(x) + · · ·+ p2(x)y′′(x) + p1(x)y′(x) + p0(x)y(x) = 0.

Now lets look at the general case of,

pn(x)y(n)(x) + pn−1y
(n−1)(x) + · · ·+ p2(x)y′′(x) + p1(x)y′(x) + p0(x)y(x) = g(x).

Lets put this in standard form by dividing through by pn(x) and naming the new
functions “q” and “f”,

y(n)(x) + qn−1(x)y(n−1)(x) + · · ·+ q2(x)y′′(x) + q1(x)y′(x) + q0(x)y(x) = f(x). (2)

Consider the simple ODE,

y′ + q(x)y = f(x); q(x) =

{
1 if x is irrational,

0 if x is rational;

In order to solve this we would need to use integrating factors, however notice that
q is not integrable (in the usual fashion), so we can’t solve this - in fact it has no
unique solution. So, we need conditions on q′s and f to guarantee that we can find
a unique solution. We outline this in the next theorem, however one should proceed
with caution because this only works for linear ODEs.

Theorem 1. Consider ODE (2) with initial conditions: y(x0) = a0, y′(x0) =
a1, . . . , y

(n−1)(x0) = an−1. Then, if qn−1, qn−2, . . . , q2, q1, q0 are continuous on a
common interval I containing x0, the IVP has exactly one solution on I.

Now we proceed to defining certain important ideas that we will use in our
following theorems.

Definition 1. The set of functions {h1, h2, . . . , hn−1, hn} are said to be linearly independent
if c1h1+c2h2+· · ·+cn−1hn−1+cnhn 6= 0, otherwise it is said to be linearly dependent.

Definition 2. The expression c1h1 + c2h2 + · · ·+ cn−1hn−1 + cnhn is said to be a
linear combination of h1, h2, . . . , hn−1, hn.



Last time we talked about superposition. We will pose it more rigorously in the
next theorem. First consider the homogeneous ODE in standard form,

y(n)(x) + qn−1(x)y(n−1)(x) + · · ·+ q2(x)y′′(x) + q1(x)y′(x) + q0(x)y(x) = 0. (3)

Theorem 2. If y1, y2, . . . , yn−1, yn are solutions to (3), then any linear combination
of y’s are also solutions.

For example, y = c1y1+c2y2, y = c1y1+c2y2+ · · ·+cnyn, etc. are also solutions.
Now we define what the Wronskian is, which will be a major part of this section.

Definition 3. Suppose h1(x), h2(x), . . . , hn−1, hn are functions with n− 1 deriva-
tives, then the Wronskian is defined to be the following determinant,

W =

∣∣∣∣∣∣∣∣∣∣∣

h1 h2 · · · hn
h′1 h′2 · · · h′n
h′′1 h′′2 · · · h′′n
...

...
. . .

...

h
(n−1)
1 h

(n−1)
2 · · · h

(n−1)
n

∣∣∣∣∣∣∣∣∣∣∣
(4)

Theorem 3. Suppose y1, y2, . . . , yn−1, yn are solutions to (3) on I, with the usual
initial conditions, then they are linearly independent if and only if W 6= 0 for all
x ∈ I.

The next definition and theorem will allow us to find guaranteed linearly indepen-
dent solutions, but note that these are not necessarily the only linearly independent
solutions.

Definition 4. The set of all linearly independent solutions of an ODE is called the
fundamental set of that ODE.

For the remaining theorems consider the second order ODE,

y′′ + q1(x)y′ + q0(x)y = 0. (5)

Theorem 4. Consider ODE (5), and let y1, y2 solve (5) for x ∈ I such that
y1(x0) = 1, y′1(x0) = 0 and y2(x0) = 0, y′2(x0) = 1. Then, y1, y2 form a fundamen-
tal set of (5).

The following theorem is a theorem we use in section 3.3.

Theorem 5. If y = u(t)+iv(t) solves (5) on I, then so does u and v independently,
i.e. if y = c1u+ ic2v is a solution, so is y = c3u+ c4v.

The next theorem gives us a formula to compute the Wronskian without having
to take a determinant, but it only works for second order ODEs.

Theorem 6 (Abel). The Wronskian of y1, y2 for (5) can be written as,

W (y1, y2) = c exp

(
−
∫
q1(x)dx

)
, (6)

and is zero (if c = 0) or nonzero (if c 6= 0) for all x ∈ I.

Now lets do some example problems,



1) The derivatives are 2e2t and (−3/2)e−3t/2, so our Wronskian is,

W =

∣∣∣∣ e2t e−3t/2

2e2t − 3
2e
−3t/2

∣∣∣∣ = −3

2
e2t−3t/2 − 2e2t−3t/2.

3) The derivatives are −2e−2t and e−2t − 2te−2t, so our Wronskian is,

W =

∣∣∣∣ e−2t te−2t

−2e−2t e−2t − 2te−2t

∣∣∣∣ = e−4t − 2te−4t + 2te−4t = e−4t.

9) We put the ODE in standard form,

y′′ +
3

t− 4
y′ +

4

t(t− 4)
y =

2

t(t− 4)
.

Notice, that this has discontinuities at t = 0, 4, and since we need to include
the initial condition, the largest domain where a unique solution exists is
t ∈ (0, 4).

11) Again we convert the ODE into standard form,

y′′ +
x

x− 3
y′ +

ln |x|
x− 3

y = 0

This is discontinuous when x = 0, 3, so our largest domain where a unique
solution containing the initial condition exists is x ∈ (0, 3).

17) Here we have an inverse problem. We need to find a g that satisfies the
Wronskian given, so lets take the Wronskian and see what we get,

W =

∣∣∣∣ e2t g
2e2t g′

∣∣∣∣ = e2tg′ − 2e2tg = e2t(g′ − 2g) = 3e4t ⇒ g′ − 2g = 3e2t

So we have to solve this first order ODE via integrating factor,

µ = exp

(
−
∫ t

2dτ

)
⇒
∫
d(e−2tg) =

∫
3dt⇒ e−2tg = 3t+C ⇒ g = 3te2t+Ce2t.

23) We go straight to the characteristic polynomial, r2 + 4r + 3 = (r + 1)(r +
3) = 0 ⇒ r = −1,−3, so our general solution is y = c1e

−x + c2e
−3x.

Now, by Theorem 4, we solve two different IVPs for this ODE: y1(1) =
c1e
−1 + c2e

−3 = 1 and y′1(1) = −c1e−1 − 3c2e
−3 = 0. By summing the

two equations we get −2c2e
−3 = 1 ⇒ c2 = −e3/2, this gives c1 = 3e/2,

so our first solution is y1 = 3
2e

(1−x) − 1
2e

3(1−x). For the second solution

we have y2(1) = c1e
−1 + c2e

−3 = 0 and y′2(1) = −c1e−1 − 3c2e
−3. We

easily get c2 = −e3/2 and then c1 = e/2, which gives us a solution of
y2 = 1

2e
(1−x) − 1

2e
3(1−x). So, the following equations make a fundamental

set of the ODE,

y1 =
3

2
e(1−x) − 1

2
e3(1−x); y2 =

1

2
e(1−x) − 1

2
e3(1−x).

27) For the first solution we have y′1 = 1 ⇒ y′′1 = 0 ⇒ −xy′1 + y′1 = 0.
For the second solution we have y′2 = cosx ⇒ y′′2 = − sinx, then (1 −
x cotx)(− sinx) − x cosx + sinx = − sinx + x cosx − x cosx + sinx = 0.
Now, we take the Wronskian of these,

W =

∣∣∣∣ x sinx
1 cosx

∣∣∣∣ = x cosx− sinx 6= 0 for x ∈ (0, π).

So, they are linearly independent on that domain.



30) We put the ODE into standard form: y′′ + (tan t)y′ − ty/ cos t = 0. Then
we use Abel’s theorem to get,

W = c exp

(
−
∫

(tan t)dt

)
= c cos t.

3.3 Complex Roots

Again consider the ODE,

ay′′ + by′ + cy = 0, (7)

which has the characteristic polynomial equation,

ar2 + br + c = 0. (8)

Using the quadratic formula we get,

r =
−b±

√
b2 − 4ac

2a
.

What if b2 − 4ac < 0? Then r is of the form r = ξ ± iθ where ξ, θ ∈ R, but this
means r is a complex conjugate. However, we do the same thing as usual to get,

y = c1e
r1x + c2e

r2x = c1e
(ξ+iθ)x + c2e

(ξ−iθ)x = eξx
(
c1e

iθx + c2e
−iθx) .

We need to deal with the part inside the parentheses, and we do this by what’s
called, Euler’s Identity. And we can derive this fairly easily by using Taylor series,
since we know the taylor series,

eit =

∞∑
n=0

(it)n

n!
=

∞∑
n=0

(−1)nt2n

(2n)!
+ i

∞∑
n=0

(−1)n+1t2n+1

(2n+ 1)!
= cos t+ i sin t. (9)

Then our solution becomes,

y = eξx[c1(cos θx+i sin θx)+c2(cos θx−i sin θx)] = eξx[(c1+c2) cos θx+i(c1−c2) sin θx].

However, we only want real solutions. Notice that cos θx and sin θx, with the
proper constant coefficients, are solutions to (7) independently. So, by Theorem 5,
y = eξx(A cos θx+B sin θx) is also a solution. We have just developed a theorem,

Theorem 7. If (8) has complex roots, i.e. r = ξ + iθ, then the general solution of
(7) is,

y = eξx(A cos θx+B sin θx). (10)

Now, lets do some examples,

4) Applying Euler’s identity, e2−iπ/2 = e2(cosπ/2− i sinπ/2) = −ie2.
6) 1

π e
i2 lnπ = 1

π (cos(2 lnπ) + i sin(2 lnπ)).

10) We go to the characteristic polynomial, r2+2r+2 = 0 and use the quadratic
formula, r = (−2 ±

√
4− 8)/2 = −1 ± i, which gives us a general solution

of y = e−t(A cos t+B sin t).



18) Again our characteristic polynomial gives, r2+4r+5 = 0, and the quadratic
formula gives, r = (−4 ±

√
−4)/2 = −2 ± i, so our general solution is

y = e−2t(A cos t + B sin t). Now we go to our initial conditions: y(0) =
A = 1. Then, y′(t) = −2e−2t(cos t + B sin t) + e−2t(− sin t + B cos t), so
y′(0) = −2 +B = 0⇒ B = 2. So, our solution is y = e−2t(cos t+ 2 sin t).

20) As per usual we have r2+1 = 0⇒ r = ±i⇒ y = A cos t+B sin t. From the

first initial condition we have, y(π/3) = A/2+
√

3B/2 = 2⇒ A = 4−
√

3B.

From the second initial condition we have, y′(π/3) = −
√

3A/2 + B/2 =

−4⇒ −
√

3 + 3B/2 +B/2 = −2
√

3 + 2B = −4⇒ B =
√

3− 2. So, we get

A = 1 + 2
√

3. Then our solution is y = (1 + 2
√

3) cos t+ (
√

3− 2) sin t.


