
Math 222 - 009 Rahman Weeks7and8

5.1 Power Series Review

Know it!

5.2 Series Solutions

Consider the ODE,

y(n) + Fn−1(x)y(n−1) + · · ·+ F1(x)y′ + F0(x)y = Q(x). (1)

First lets define a few things,

Definition 1. A point x = x0 is said to be an ordinary point of (1) if Fn, . . . , F0, Q,
all have convergent Taylor series in a neighborhood of x0. However if at least one
function does not satisfy this criterion, x = x0 is called a singular point.

For this section we consider the problem,

P (x)y′′ +Q(x)y′ +R(x)y = 0; x = x0, (2)

where x = x0 is an ordinary point and R, Q, P are polynomials. We make the
ansatz:

y =

∞∑
n=0

an(x− x0)n (3)

⇒ y′ =

∞∑
n=1

nan(x− x0)n−1 =

∞∑
n=0

(n+ 1)an+1(x− x0)n (4)

⇒ y′′ =

∞∑
n=2

n(n− 1)an(x− x0)n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− x0)n. (5)

Then we plug this into the ODE (2) and try to solve for the “a’s”.
Lets do some problems,

3) (a) Plugging into the ODE gives,

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− 1)n − (n+ 1)an+1x(x− 1)n − an(x− 1)n = 0,

but x = 1 + (x− 1), so

∞∑
n=0

(n+2)(n+1)an+2(x−1)n−(n+1)an+1(x−1)n−(n+1)an+1(x−1)n+1−an(x−1)n = 0

By matching terms we get:

x0 : 2a2 − a1 − a0 = 0⇒ a2 =
1

2
(a1 + a0),

xm : (m+ 2)(m+ 1)am+2 − (m+ 1)am+1 − (m+ 1)am = 0⇒ am+2 =
am+1 + am
m+ 2

for m ≥ 1

Notice that we can not solve for a1 and a0 because these are like our
c1 and c0 where we have to solve for them using the initial conditions,
if given.

1



(b) This means a0 = 0 gives one solution and a1 = 0 gives another,

a0 = 0⇒ a2 =
a1
2
⇒ a3 =

a1
2
⇒ a4 =

a1
4
· · · ⇒ y2 = (x− 1) +

1

2
(x− 1)2 +

1

4
(x− 1)3 +

1

4
(x− 1)4 + · · ·

a1 = 0⇒ a2 =
a0
2
⇒ a3 =

a0
6
⇒ a4 =

a0
6
· · · ⇒ y1 = 1 +

1

2
(x− 1)2 +

1

6
(x− 1)3 +

1

6
(x− 1)4 + · · ·

6) (a) Plugging in to the ODE gives,

∞∑
n=0

(n+ 2)(n+ 1)an+2(2 + x2)xn − (n+ 1)an+1x
n+1 + 4anx

n

=

∞∑
n=0

2(n+ 2)(n+ 1)an+2x
n + (n+ 2)(n+ 1)an+2x

n+2 − (n+ 1)an+1x
n+1 + 4anx

n = 0

By matching terms we get:

x0 : 4a2 + 4a0 = 0⇒ a2 = −a0

x1 : 12a3 + 3a1 = 0⇒ a3 = −1

4
a1

xm : 2(m+ 2)(m+ 1)am+2 +m(m− 1)am −mam + 4am = 0⇒ am+2 = − m2 − 2m+ 4

2(m+ 2)(m+ 1)
am; m ≥ 2

(b) Now we find the first few terms of our two solutions,

a0 = 0⇒ a2 = a4 = · · · = 0, so a3 = −1

4
a1 ⇒ a5 =

7

160
a1 ⇒ y2 = x− 1

4
x3 +

7

160
x5 + · · ·

a1 = 0⇒ a3 = a5 = · · · = 0, so a2 = −a0 ⇒ a4 =
1

6
a0 ⇒ y1 = 1− x2 +

1

6
x3 + · · · .

11) (a) Plugging into the ODE gives,

∞∑
n=0

(n+ 2)(n+ 1)an+2(3− x2)xn − 3(n+ 1)an+1x
n+1 − anxn

=

∞∑
n=0

3(n+ 2)(n+ 1)an+2x
n − (n+ 2)(n+ 1)an+2x

n+2 − 3(n+ 1)an+1x
n+1 − anxn = 0

Matching terms gives,

x0 : 6a2 − a0 = 0⇒ a2 =
1

6
a0

x1 : 18a3 − 3a1 − a1 = 18a3 − 4a1 = 0⇒ a3 =
2

9
a1

xm : 3(m+ 2)(m+ 1)am+2 −m(m− 1)am − 3mam − am = 0

⇒ am+2 =
1 + 3m+m2 −m
3(m+ 2)(m+ 1)

am =
m+ 1

3(m+ 2)
am; m ≥ 2

(b) For the first few terms we get,

a0 = 0⇒ a2 = a4 = · · · = 0⇒ a3 =
2

9
a1 ⇒ a5 =

4

15
a3 =

8

135
a1 ⇒ y2 = x+

2

9
x3 +

8

135
x5 + · · ·

a1 = 0⇒ a3 = a5 = · · · = 0⇒ a2 =
1

6
a0 ⇒ a4 =

3

12
a2 =

1

24
a0 ⇒ y1 = 1 +

1

6
x2 +

1

24
x4 + · · · .



5.4 Euler’s Equation; Regular singular points

Consider the ODE,

x2y′′(x) + αxy′(x) + βy(x) = 0. (6)

This has a singular point because if we put this into standard form we get,

y′′ + α
1

x
y′ + β

1

x2
y = 0,

which violates the existence and uniqueness theorem at x = 0. We obviously don’t
know how to deal with this problem. But there is a similar problem we know how
to deal with really well,

y′′(ξ) + ay′(ξ) + by(ξ) = 0. (7)

Basically we need to make a change of variables on x in order to get rid of the x’s
in the coefficients. What do we know that gives us 1/x every time we differentiate?
ξ = lnx does the trick. Taking the derivatives are a little different than what we
are used to, but very intuitive due to Leibniz notation,

dy

dx
=
dy

dξ

dξ

dx
=

1

x

dy

dξ
,

d2y

dx2
=
dy′

dx
=
dy′

dξ

dξ

dx
=

1

x

(
e−ξ

dy

dξ

)′
=

1

x

(
−e−ξ dy

dξ
+ e−ξ

d2y

dx2

)
=

1

x2

(
d2y

dξ2
− dy

dξ

)
.

Plugging this back into (7) gives us,

d2y

dξ2
− dy

dξ
+ α

dy

dξ
+ βy = y′′ + ay′ + by = 0.

To solve (7) we used the ansatz y = exp(rξ), so to solve (6) we use y = xr. Lets
think of a slightly more general second order ODE for this part,

Ax2y′′ +Bxy′ + Cy = 0.

Then plugging into this gives,

Ax2[r(r−1)]xr−2+Bxrxr−1+Cxr = Ar(r−1)xr+Brxr+Cxr = 0⇒ Ar(r−1)+Br+C = 0.

This is our characteristic polynomial of Euler’s equation. And we have the usual
cases,

Cases Solution Comment
Distinct Roots y = c1x

r1 + c2x
r2

Repeated Roots y = (c1 + c2 lnx)xr because ξ = lnx
Complex Conjugate Roots y = xλ(A cos(µ lnx) +B sin(µ lnx)) where r = λ± iµ



Now lets do some problems,

5) The characteristic polynomial is r(r−1)−r+1 = r2−2r+1 = (r−1)2 = 0,
so we have repeated roots r = 1, then y = (c1 + c2 ln |x|)x; x 6= 0.

12) The characteristic polynomial is r(r − 1) − 4r + 4 = r2 − 5r + 4 = (r −
1)(r − 4) = 0, then y = c1x+ c2x

4; x 6= 0.
11) The characteristic polynomial is r(r − 1) + 2r + 4 = r2 + r + 4 = 0, then

r = (−1± i
√

15)/2, so

y = |x|−1/2
[
A cos

(√
15

2
ln |x|

)
+B sin

(√
15

2
ln |x|

)]
.

There is one more small theoretical thing we have to discuss,

Definition 2. Suppose x = x0 is a singular point of the ODE

y′′ + P (x)y′ +Q(x)y = 0.

If (x−x0)P (x) and (x−x0)2Q(x) have convergent Taylor series at x = x0, then x =
x0 is called a regular singular point. Otherwise it is called an irregular singular point.

Lets do one example of this,

19) We convert this to standard form,

y′′ +
x− 2

x2(1− x)
y′ − 3

x(1− x)
y = 0

So, our singular points are x = 0, 1. Since these are polynomials it suffices
to take the limit and see if it converges,

x = 0 : lim
x→0

xP (x) = lim
x→0

x
x− 2

x2(1− x)
=

x− 2

x(1− x)
=∞.

So, x = 0 is an irregular singular point.

lim
x→1

(x− 1)P (x) = lim
x→1

(x− 1)
x− 2

x2(1− x)
= lim
x→1

2− x
x2

= 1.

lim
x→1

(x− 1)2Q(x) = lim
x→1

(x− 1)2
−3

x(1− x)
= lim
x→1

3(1− x)

x
= 0.

This means that x = 1 is a regular singular point.



6.1 Laplace Transforms

Differential equations are hard! With the characteristic polynomial we were able
to convert the problem into an algebraic equation, but this only works for simple
problems. For harder problems there are special types of transforms called integral
transforms,

Definition 3. If f(t) is defined for all t > 0 and if s ∈ R such that the integral

F (s) =

∫ ∞
0

e−stf(t)dt (8)

converges for s < sn < ∞, then F (s) is called the Laplace Transform of f(t) and
denoted as L{f(t)} = F (s).

Now lets do some examples,

2) The sketch should look like,



10) Here we use the definition of the Laplace Transform,

F (s) =

∫ ∞
0

e−steat sinh bt =

∫ ∞
0

e−steat
1

2
(ebt − e−bt)dt =

1

2

∫ ∞
0

e(b+a−s)t − e(−b+a−s)tdt

= lim
τ→∞

1

2

∫ τ

0

e(b+a−s)t − e(−b+a−s)tdt =
1

2
lim
τ→∞

[
1

b+ a− s
e(b+a−s)t − 1

−b+ a− s
e(−b+a−s)t

]τ
0

=
1

2
lim
τ→∞

[
1

b+ a− s
e(b+a−s)τ − 1

−b+ a− s
e(−b+a−s)τ − 1

b+ a− s
+

1

−b+ a− s

]
=

1

2

[
1

s− a− b
− 1

s− a+ b

]
=

b

(s− a)2 − b2
.

However, notice that we can only take the integral if both b + a − s < 0
and −b+ a− s < 0, which means we need s− a > |b|.

14) Again we use the definition,

F (s) =

∫ ∞
0

e−steat cos bt =

∫ ∞
0

e−steat
1

2
(eibt − e−ibt)dt =

1

2

∫ ∞
0

(
e[(a+ib)−s]t − e[(a−ib)−s]t

)
dt

= lim
τ→∞

1

2

∫ τ

0

(
e[(a+ib)−s]t − e[(a−ib)−s]t

)
dt =

1

2
lim
τ→∞

[
1

(a+ ib)− s
e[(a+ib)−s]t − 1

(a− ib)− s
e[(a−ib)−s]t

]τ
0

=
1

2
lim
τ→∞

[
1

(a+ ib)− s
e[(a+ib)−s]τ − 1

(a− ib)− s
e[(a−ib)−s]τ − 1

(a+ ib)− s
+

1

(a− ib)− s

]
=

1

2

[
1

(a− ib)− s
− 1

(a+ ib)− s

]
=

s− a
(s− a)2 + b2

.

The condition for this is more difficult, but if we ignore the complex part,
which we can do because of certain properties of complex numbers, we get
that the integral converges for s > a.

22) This one is much easier than the previous two. Notice that after t = 1 the
function is zero, so our integral becomes,

F (s) =

∫ ∞
0

e−stf(t)dt =

∫ 1

0

te−stdt = − 1

s2
e−st(st+ 1)

∣∣∣∣1
0

= − 1

s2
e−s(s+ 1) +

1

s2
.

We have one more small theoretical consideration. This can be derived using
Calc II, but unless you were in my class you probably didn’t see this in Calc II.

Theorem 1. If |f(t)| ≤ g(t) for t ≥ M ,
∫∞
M
g(t)dt converges implies

∫∞
a
f(t)dt

also converges for t ≥ a, and
If f(t) ≥ g(t) for t ≥M ,

∫∞
M
g(t)dt diverges implies

∫∞
0
f(t)dt diverges for t ≥ a.

Lets do one example with this,

28) We have that | cos t| ≤ 1, so |e−t cos t| ≤ e−t, and
∫∞
0
e−tdt = 1 converges,

so
∫∞
0
e−t cos tdt also converges.


