
Math 222 Rahman Exam 2 Review Solutions

(1) Consider the IVP: t(t− 4)y′′ − 3ty′ + 4y = 2; y(3) = 0, y′(3) = −1.
(a) Please determine the longest interval for which the IVP is guaranteed to have a unique solution.

Solution: The discontinuities are at t = 0, 4. The initial condition is t = 3, so t ∈ (0, 4) .

(b) Please compute the Wronskian using Abel’s theorem.
Solution:

W (y1, y2) = C exp

(
3

∫
dt

t− 4

)
= C exp (3 ln |t− 4|) .

Notice that t− 4 < 0 for t ∈ (0, 4), so |t− 4| = 4− t, then

W = C exp
(
ln(4− t)3

)
= C(4− t)3 .

(2) Consider the IVP: 4y′′ + 12y′ + 9y = 0; y(0) = −1, y′(0) = α.

Solution: 4r2 + 12r + 9 = 0 ⇒ r2 + (12/4)r + (32/22) = 0 ⇒ (r + 3/2)2 = 0 ⇒ r = −3/2 ⇒

y = (c1 + c2t)e
−3t/2 . The first initial conditions give us y(0) = c1 = −1 ⇒ y = (−1 + c2t)e

−3t/2.

For the second initial condition lets take the derivative, y′ = c2e
−3t/2 − 3

2
(−1 + c2t)e

−3t/2, so y′(0) =

c2 + 3/2 = α⇒ c2 = α− 3/2 , then the solution is y = [−1 + (α− 3/2)t]e−3t/2 .

(a) For what α does the solution change signs at t = 1/2?
Solution: A change of sign always happens around the time the curve hits zero,

t =
1

2
⇒ y =

(
−7

4
+
α

2

)
e−3/4 = 0⇒ α

2
=

7

4
⇒ α =

7

2
.

(b) How many times does this solution (for the α above) change signs for t > 0?
Solution: Same idea as above,

α =
7

2
⇒ y = (−1 + 2t)e−3t/2 = 0⇒ t =

1

2
.

Since we only have one solution for t, y will change signs only once.

(3) One solution to t2y′′ − 3ty′ + 4y = 0 is y1 = t2. Please find the other solution.
Solution: Let y = v(t)y1 ⇒ y′ = v′y1 + vy′1 ⇒ y′′ = v′′y1 + 2v′y′1 + vy′′1 . Plugging this into the

ODE gives

t2vy′′1 + 2t2v′y′1 + t2vy′′1 − 3tv′y1 − 3tvy′1 + 4vy1 = t2v′′y1 + (2t2y′1 − 3ty1)v
′ +
��

���
���

���:0

(t2y′′1 − 3ty′1 + 4y1)v = 0.

Now let u = v′, then

t2y1u
′ = (3ty1 − 2t2y′1)u⇒ t4u′ = (3t3 − 4t3)u⇒ u′ = −1

t
u

⇒
∫
du

u
= −

∫
dt

t
⇒ lnu = − ln t+ c1 ⇒ u =

k

t
⇒ v = k ln t+ c2

⇒ y = v(t)y1 = kt2 ln t+ c2t
2 ⇒ y2 = t2 ln t .

1



(4) One solution to 2t2y′′ + 3ty′ − y = 0 is y1 = 1/t. Please find the other solution.
Solution: Let y = v(t)y1 ⇒ y′ = v′y1 + vy′1 ⇒ y′′ = v′′y1 + 2v′y′1 + vy′′1 . Plugging this into the

ODE gives

2t2v′′y1 + 4t2v′y′1 + 2t2vy′′1 + 3tv′y1 + 3tvy′1 − vy1 = 2t2v′′y1 + (4t2y′1 + 3ty1)v
′ +
���

���
���

��:0

(2t2y′′1 + 3ty′1 − y1)v = 0.

Let u = v′,

2t2u′y1 = −(4t2y′1 + 3ty1)u⇒ 2tu′ = u⇒
∫
du

u
=

1

2

∫
dt

t

⇒ lnu =
1

2
ln t+ c1 ⇒ u = k1

√
t ⇒ v = k2t

3/2 + c2

⇒ y = k2t
1/2 + c2

1

t
⇒ y2 =

√
t .

(5) Please use the method of undetermined coefficients to find the form of the particular solution (WITHOUT
SOLVING FOR CONSTANTS) of the following ODEs.
(a)

y′′ + 5y′ + 6y = −t+ e−3t + te−2t + e−3t cos t

Solution: The characteristic solution is yc = c1e
−2t + c2e

−3t. We take a guess at the particular
solution using our forcing function

yp
?
= a0 + a1t+ ke−3t + (b0 + b1t)e

−2t + e−3t[A1 cos t+ A2 sin t].

Notice that there is a repeat with e−3t and e−2t, so our particular solution becomes

yp = a0 + a1t+ kte−3t + t(b0 + b1t)e
−2t + e−3t[A1 cos t+ A2 sin t].

(b)

y′′ + 3y′ + 2y = et(t2 + 1) sin(2t) + 3e−t cos t+ 4et.

Solution: The characteristic solution is yc = c1e
−2t + c2e

−t. We take a guess at our particular
solution, but as we’ll see, we won’t have any repeats,

yp = (a0 + a1t+ a2t
2)et[A cos 2t+ A2 sin 2t] + e−t[B1 cos t+B2 sin t] + b0e

t.

(6) Please find the general solution of the ODE: y′′ + 4y′ + 4y = t−2e−2t; t > 0

Solution: The characteristic solution is yc = (c1 + c2t)e
−2t, so our two solutions are y1 = e−2t and

y2 = te−2t . The Wronskian is

W (y1, y2) =

∣∣∣∣ e−2t te−2t

−2e−2t e−2t − 2te−2t

∣∣∣∣ = e−4t .

Then we use our formula for variation of parameters

y = −y1
∫

y2f(t)

W (y1, y2)
dt+ y2

∫
y1f(t)

W (y1, y2)
dt = −e−2t

∫
te−2t · t−2e−2t

e−4t
dt+ te−2t

∫
e−2t · t−2e−2t

e−4t
dt

= −e−2t[ln t+ c3] + te−2t
[
−t−1 + c4

]
.

Since they ask for the general solution, there’s no need to simplify it any further.



(7) Consider the ODE y′′ + 2y′ + 2y = cos t.
(a) Please find the general solution.

Solution: The characteristic polynomial is r = 1
2
(−2±

√
4− 8) = −1± i , then yc = e−t[A1 cos t+

A2 sin t]. We’ll see that there won’t be any repeats, so the particular solution is

yp = B1 cos t+B2 sin t.⇒ y′p = −B1 sin t+B2 cos t⇒ y′′p = −B1 cos t−B2 sin t.

Plugging it into the ODE gives

−B1 cos t−B2 sin t− 2B1 sin t+ 2B2 cos t+ 2B1 cos t+ 2B2 sin t = cos t

⇒ (B1 + 2B2) cos t+ (B2 − 2B1) sin t = cos t⇒ B2 = 2B1 ⇒ B1 =
1

5
, B2 =

2

5

⇒ y = e−t[A1 cos t+ A2 sin t] +
1

5
cos t+

2

5
sin t .

(b) What happens to the solution as t→∞?
Solution: As t→∞, y → 1

5
cos t+ 2

5
sin t

(8) Consider the ODE 2t2y′′ − ty′ + y = t
√
t.

(a) One solution to the homogeneous ODE is y1 = t. Use reduction of order to find the other solution
y2.
Solution: Let y = v(t)y1 ⇒ y′ = v′y1 + vy′1 ⇒ y′′ = v′′y1 + 2v′y′1 + vy′′1 . Plugging this into the
ODE gives

2t2v′′y1 + 4t2v′y′1 + 2t2vy′′1 − tv′y1 − tvy′1 + vy1 = 2t2v′′y1 + (4t2y′1 − ty1)v′ + (
���

���
���:

0
2t2y′′1 − ty′1 + y1)v = 0.

Let u = v′

2t2y1u
′ = (ty1 − 4t2y′1)u⇒ 2t�3u′ = −3��t2u⇒

∫
du

u
= −3

2

∫
dt

t

⇒ lnu = −3

2
ln t+ c1 ⇒ u = k1t

−3/2 ⇒ v = k2t
−1/2 + c2

⇒ y = k2t
1/2 + c2t ⇒ y2 = t1/2 .

(b) Use the characteristic solution yc = c1y2 + c2y2 to find the general solution to the full ODE.

Solution: The forcing function is f(t) =
1

2
t−1/2 (i.e. standard form) and Wronskian is

W (y1, y2) =

∣∣∣∣ t t1/2

1 1
2
t−1/2

∣∣∣∣ = −1

2
t1/2

Then we plug into our formula to get

y = −y1
∫

y2f(t)

W (y1, y2)
dt+ y2

∫
y1f(t)

W (y1, y2)
dt = −t

∫
t1/2 · (1/2)t−1/2

−1
2
t1/2

dt+ t1/2
∫
t · (1/2)t−1/2

−1
2
t1/2

dt

= −t
[
−2t1/2 + c3

]
+ t1/2[−t+ c4]

Again, since only the general solution was required there is no need to simplify any further.



(9) Please solve the IVP: y′′ + 4y = 6 sin(4t); y(0) = y′(0) = 0.
Solution: The characteristic solution is yc = A1 cos 2t + A2 sin 2t, and we’ll see that there are no

repeats so the particular solution is

yp = B1 cos 4t+B2 sin 4t⇒ y′p = −4B1 sin 4t+ 4B2 cos 4t⇒ y′′p = −16B1 cos 4t− 16B2 sin 4t

Plugging it into the ODE gives

− 16B1 cos 4t− 16B2 sin 4t+ 4B1 cos 4t+ 4B2 sin 4t = −12B1 cos 4t− 12B2 sin 4t = 6 sin 4t

⇒ B1 = 0, B2 = −1

2
⇒ y = A1 cos 2t+ A2 sin 2t− 1

2
sin 4t.

The first initial condition gives y(0) = A1 = 0 , and the second initial condition gives y′(0) = 2A2−2 =

0⇒ A2 = 1 , then our solution is

y = sin 2t− 1

2
sin 4t

(10) Consider the IVP y′′ − 3y′ − 4y = t+ 2; y(0) = 3, y′(0) = 0.
(a) Please find the solution to the IVP.

Solution: The characteristic solution is yc = c1e
−4t+c2e

−t, and we’ll see that there are no repeats
so our particular solution is yp = a1t+ a0 ⇒ y′p = a1 ⇒ y′′p = 0. Plugging into the ODE gives

−3a1 − 4a1t− 4a0 = t+ 2⇒ a1 = −1

4
⇒ a0 = − 5

16
⇒ y = c1e

4t + c2e
−t − 1

4
t− 5

16
.

The first initial condition gives us y(0) = c1 + c2 − 5/16 = 3 ⇒ c1 + c2 = 53/16. The derivative
of the solution is y′ = 4c1e

4t − c2e
−t − 1/4, then the second initial condition gives us y′(0) =

4c1− c2− 1/4 = 0⇒ c1− c2/4 = 1/16. Then we get c2 = 13/5 and c1 = 57/80 and our solution

becomes

y =
57

80
e4t +

13

5
e−t − 1

4
t− 5

16
.

(b) What happens to the solution as t→∞?
Solution: As t→∞, y →∞.

(11) A mass weighing 1/2 lb (i.e. mass = 1/64lb · s2/ft) stretches a spring 1/2 ft.
(a) Suppose the system has no damping. The mass is initially pulled down 1/2 ft and released.

(i) Write down the IVP for this system.

Solution: k = F/x =
1/2

1/2
= 1 , so our IVP is

1

64
x′′ + x = 0; x(0) =

1

2
, x′(0) = 0.

(ii) Solve the IVP. The general solution will be x = A cos 8t+B sin 8t . The initial conditions

give us x(0) = A = 1/2 and x′(0) = 8B = 0 . Then the solution is

x =
1

2
cos 8t .

(iii) When does the mass return to the equilibrium position (i.e. x = 0).

Solution: x = 0⇒ t = π/16 for the first time.



(b) Now suppose the system has a damping constant of 2lb · s/ft. The mass is initially pushed up 1/2
ft and released with a downward velocity of 1/2 ft/s.

(i) Write down the IVP for this system.
Solution: The damping adds a 2x′ term, so

1

64
x′′ + 2x′ + x = 0; x(0) = −1

2
, x′(0) =

1

2
.

(ii) Solve the IVP.
Solution: This is where the problem starts to be a pain, but basically, the roots are

r2 + 128r + 64 = 0⇒ r =
1

2

(
−128± 1

2

√
1282 − 4 · 64

)
⇒ r1,2 = −64± 8

√
63

From this point lets just write down things in the general form because it doesn’t make sense
to carry all those ridiculous number around.

x = c1e
r1t + c2e

r2t.

The first initial condition gives us x(0) = c1 + c2 = −1/2 and the second initial condition
gives us x′(0) = r1c1 + r2c2 = 1/2, then we get

c2 =
r1 + 1

2(r2 − r1)
, c1 =

r2 + 1

2(r1 − r2)
.

Moving on...

(12) Given that y1 = 1/t is a solution, please find another solution to the ODE

t2y′′ + 3ty′ + y = 0; t > 0

Solution: Let y = v(t)y1 ⇒ y′ = v′y1 + vy′1 ⇒ y′′ = v′′y1 + 2v′y′1 + vy′′1 , Plugging into the ODE
gives us

t2v′′y1 + 2t2v′y′1 + t2vy′′1 + 3tv′y1 + 3tvy′1 + vy1 = t2y1v
′′ + (2t2y1 + 3ty1)v

′ +
���

���
���

�:0
(t2y′′1 + 3ty′1 + y1)v = 0.

Let u = v′,

t2y1u
′ = −(2t2y′1 + 3ty1)u⇒ tu′ = −(−2 + 3)u = −u⇒

∫
du

u
= −

∫
dt

t

⇒ lnu = − ln t+ c1 ⇒ u = k1
1

t
⇒ v = k2 ln t+ c2

⇒ y = k2
1

t
ln t+ c2

1

t
⇒ y2 =

1

t
ln t



(13) Please solve the following IVP

y′′ + 4y = 3 sin 2t; y(0) = 2, y′(0) = −1.

Solution: The characteristic solution is yc = A1 cos 2t+ A2 sin 2t and our guess for the particular

solution is yp
?
= B1 cos 2t + B2 sin 2t, but look at that, we have a repeat, so our particular solution

actually is

yp = B1t cos 2t+B2t sin 2t⇒ y′p = B1 cos 2t− 2B1t sin 2t+B2 sin 2t+ 2B2t cos 2t

⇒ y′′p = −4B1 sin 2t− 4B1t cos 2t+ 4B2 cos 2t− 4B2t sin 2t.

Plugging this into the ODE gives

− 4B1 sin 2t− 4B1t cos 2t+ 4B2 cos 2t− 4B2t sin 2t+ 4B1t cos 2t+ 4B2t sin 2t

= −4B1 sin 2t+ 4B2 cos 2t = 3 sin 2t⇒ B2 = 0, B1 = −3

4
.

Then the general solution is

y = A1 cos 2t+ A2 sin 2t− 3

4
t cos 2t⇒ y(0) = A1 = 2

The derivative of this is

y′ = −2A1 sin 2t+ 2A2 cos 2t− 3

4
cos 2t+

3

2
t sin 2t⇒ y′(0) = 2A2 −

3

4
= −1⇒ A2 = −1

8
.

Then our solution is

y = 2 cos 2t− 1

8
sin 2t− 3

4
t cos 2t.



Brief Summary of Chapter 3

Obviously incomplete so make sure you read the notes as well!

• Section 3.2: Existence and Uniqueness and Wronskian (y′′+ p(x)y′+ q(x)y = 0; y(0) = y0, y
′(0) = Y0)

– Existence and Uniqueness: Put ODE in standard form and list intervals for which the coefficients
and forcing function are continuous, then pick out the interval that contains the initial conditions.

– Wronskian: W (y1, y2) = y1y
′
2 − y2y′1.

– Abel’s Theorem: W (y1, y2) = C exp
(
−
∫ x

p(ξ)dξ
)

• Section 3.3: Complex Roots: r = ξ ± iθ ⇒ y = eξx(A cos θx+B sin θx).

• Section 3.4: Repeated Roots and Reduction of Order
– Repeated Roots: y = (c1 + c2t)e

rt.
– Reduction of Order: If y1 is a solution, let y = v(x)y1, plug it into the ODE. The v(x) term

disappears and you’re left with v′ and v′′ terms. Let u = v′, solve that ODE, then integrate u to
get v. If you kept the constants of integration multiply v by y1 to get your general solution.

• Section 3.5: Undetermined coefficients: Find yc. Use f(x) to guess at yp and group like terms. If there
are no repeats, that’s your yp. If there are repeats, get rid of the repeats by multiplying through by x
as many times as needed.

• Section 3.6: Variation of Parameters: If we know y1 and y2 (sometimes given, sometimes found by

solving the homogeneous equation), then y = −y1
∫ y2f(x)

W (y1,y2)
dt+ y2

∫ y1f(x)
W (y1,y2)

dt.

• Section 3.7: Applications without forcing: Know how to set up and solve the IVPs. The amplitude
in undamped oscillatory motion is the constant: R =

√
A2 +B2. For damped oscillatory motion

R(t) = eξt
√
A2 +B2. For undamped oscillatory motion the frequency and period are ω =

√
k/m and

T = 2π/ω. For damped oscillatory motion the quasi-frequency and quasi-period are θ (the imaginary
part of the root) and Td = 2π/θ.

• Section 3.8: Applications with forcing: Know your trig identities. The transient solution is the one that
goes to zero. The steady state solution is the one that persists. You can get resonance in an undamped
system if the frequency of your forcing function is the same as the frequency of your characteristic
solution because this causes a repeat and the particular solution has to be multiplied by t. You can get
resonance in an undamped system if damping is low enough and the frequency of your forcing function
is close enough to the “natural frequency”, ω0 (the frequency of the system in the absence of forcing
and damping).

Important identities: cos(a ± b) = cos a cos b ∓ sin a sin b and sin(a ± b) = sin a cos b ± cos a sin b.
Typically, a = 1

2
(ω0 + ω)t and b = 1

2
(ω0 − ω)t for this section.

• Trig/Hyp identities that may be useful overall:

sin2 θ + cos2 θ = 1; cosh2 x− sinh2 x = 1

cos(a± b) = cos a cos b∓ sin a sin b; sin(a± b) = sin a cos b± cos a sin b

sin2 θ

2
=

1

2
(1− cos 2θ); cos2

θ

2
=

1

2
(1 + cos 2θ)

You can basically derive any other (seldom used) trig identity that you may need from these by
either dividing through by a sin or a cos.


