
Math 222 Rahman Exam 3 Review

(1) Find α such that y1 = x1/2 is a solution to the ODE

x2y′′ + αxy′ + y = 0

and find the other linearly independent solution y2 (hint: it’s easier than it looks).
Solution: The characteristic polynomial is

r(r − 1) + αr + 1 = r2 + (α− 1)r + 1 = 0.

Now, we know one of the roots is r = 1/2, and we notice that the last term of the polynomial is 1, so
the other root must be r = 2, then the solution is y2 = x2 and our characteristic polynomial is

r2 − 5

2
r + 1 = 0⇒ α = −3

2
.

(2) Find all singular points and determine their regularity for the following ODE

(1− x2)y′′ − 2xy′ + β(β + 1)y = 0.

Solution: We first put this into standard form,

y′′ − 2x

1− x2
y′ +

β(β + 1)

1− x2
y = 0; x0 = ±1.

Then we use the following limits,

x0 = 1 : lim
x→1
���

�(x− 1) · 2x

���
�(x− 1)(x+ 1)

= 1X lim
x→1

(x− 1)�2 · β(β + 1)

���
�(1− x)(1 + x)

= 0X

x0 = −1 : lim
x→−1�

���(x+ 1) · 2x

���
�(x+ 1)(x− 1)

= 1X lim
x→−1

(x+ 1)�2 · β(β + 1)

���
�(1 + x)(1− x)

= 0X

All the limits are convergent, so both points are regular singular points.

(3) Consider the power series solution to the ODE y′′ + y = 0.
Solution: First plug in the series solution Ansatz to get,

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n + anx

n = 0.

(a) Find the recurrence relation.
Solution: Since both exponents are n we can go straight to the general term,

an+2 = − an
(n+ 2)(n+ 1)

.

(b) Write out the first two nonzero terms for the two linearly independent solutions.
Solution: For the two solutions we have

a0 = 0, a1 = 1⇒ a2 = a4 = · · · = 0; a3 = −1

6
⇒ y1 = x− 1

6
x3 + · · ·

a1 = 0, a0 = 1⇒ a3 = a5 = · · · = 0 a2 = −1

2
⇒ y2 = 1− 1

2
x2 + · · ·

(c) Determine the radius of convergence for each series by using the ratio test.
Solution: Recall the ratio test,

lim
n→∞

∣∣∣∣xn+2an+2

xnan

∣∣∣∣ = lim
n→∞

x2
1

(n+ 2)(n+ 1)
= 0 < 1

Since this is true for all x the radius of convergence is R =∞.
1



(4) Consider the function

g(t) =


e−t 0 ≤ t < 1

e−3t + 1 1 ≤ t < 2

1 t ≥ 2

(a) Graph the function for 0 ≤ t ≤ 3.
Solution: Graph it!

(b) Write g(t) as unit step functions; i.e. the “u” notation.
Solution: We need to break g(t) up into a few two-step step-functions.

g(t) = e−t +


0 t < 1,

e−3t + 1− e−t 1 ≤ t < 2,

1− e−t t ≥ 2;

= e−t +

{
0 t < 1,

e−3t + 1− e−t t ≥ 1;
−

{
0 t < 2,

e−3t t ≥ 2;

= e−t + e−3tu1(t) + u1(t)− e−tu1(t)− e−3tu2(t)
= e−t + e−3e−3(t−1)u1(t) + u1(t)− e−1e−(t−1)u1(t)− e−6e−3(t−2)u2(t).

(c) Find the Laplace transform of the function.
Solution: Taking the Laplace of each term gives us,

1

s+ 1
+ e−3

1

s+ 3
e−s +

1

s
e−s − e−1 1

s+ 1
e−s − e−6 1

s+ 3
e−2s.

(5) Solve the following IVP

y′′ + 4y′ + 8y = 2uπ(t)− 2δ(t− 2π); y(0) = 2, y′(0) = 0

Solution: Taking the Laplace Transform of the IVP give us

−��
�*0

y′(0)− s���*
2

y(0) + s2Y − 4��
�*2

y(0) + 4sY + 8Y = 2e−πs
1

s
− 2e−2πs

⇒ (s2 + 4s+ 8)Y = 2e−πs
1

s
− 2e−2πs + 2s+ 8

⇒ Y = 2
s+ 4

(s+ 2)2 + 4
− 2e−2πs

1

(s+ 2)2 + 4
+ 2e−πs

1

s(s2 + 4s+ 8)
.

The last term needs to be separated using partial fractions,

1

s(s2 + 4s+ 8)
=
A

s
+

Bs+ C

s2 + 4s+ 8
⇒ As2 + 4As+ 8A+Bs2 + Cs = (A+B)s2 + (4A+ C)s+ 8A = 1

So, A = 1
8
⇒ C = −1

2
, B = −1

8
. Then we get

Y = 2 · s+ 2

(s+ 2)2 + 4
+ 2

2

(s+ 2)2 + 4
− e−2πs 2

(s+ 2)2 + 4
+ e−πs

[
1/4

s
− 1

4
· s+ 2

(s+ 2)2 + 4
− 1

4

2

(s+ 2)2 + 4

]
⇒ y = 2e−2t cos 2t+ 2e−2t sin 2t− u2π(t)e−2(t−2π) sin 2(t− 2π)

+ uπ(t)

[
1

4
− 1

4
e−2(t−π) cos 2(t− π)− 1

4
e−2(t−π) sin 2(t− π)

]
.

(6) Use a convolution to find the Laplace Transform of (Don’t integrate)

F (s) =
1

s3(s2 + 1)
.

Solution: The inverse Laplace for 1/s3 is 1/2t2 and for 1/(s2 + 1) it’s sin t, so we get

f(t) =

∫ t

0

1

2
(t− τ)2 sin τdτ



(7) Find the Laplace Transform of

f(t) =

∫ t

0

(t− τ)2 cos(2τ)dτ

Solution: As before, the Laplace of t2 is 2/s3 and for cos 2t it is s/(s2 + 4), so we get

F (s) =
2s

s3(s2 + 4)

(8) Find the inverse Laplace Transform (in closed form) of

F (s) =
s2 − 9

s3 + 6s2 + 9s
.

Solution: We first simplify F

F (s) =
��

��(s+ 3)(s− 3)

s(s+ 3)�2
=

1

s+ 3
− 3

s(s+ 3)
=

1

s+ 3
− 1

s
+

1

s+ 3
=

2

s+ 3
− 1

s
.

Then the inverse Laplace Transform is f(t) = 2e−3t − 1.

(9) Find the inverse Laplace Transform (in closed form) of

G(s) = e−s
s− 2

s2 + 2s+ 2

Solution: We first break it up and then take the inverse Laplace Transform,

G(s) = e−s
[

s+ 1

(s+ 1)2 + 1
− 3

1

(s+ 1)2 + 1

]
⇒ g(t) = u1(t)

[
e−(t−1) cos(t− 1)− 3e−(t−1) sin(t− 1)

]
.

(10) Find the inverse Laplace Transform of

F (s) =
3

s2 + 4

Solution: For this we get,

F (s) =
3

2
· 2

s2 + 4
⇒ f(t) =

3

2
sin 2t.

(11) Find the inverse Laplace Transform of

F (s) =
2s− 3

s2 − 4

solution: Again, we split it up and take the inverse Laplace,

F (s) = 2
s

s2 − 4
− 3

2

2

s2 − 4
⇒ f(t) = 2 cosh 2t− 3

2
sinh 2t.

(12) Find the inverse Laplace Transform of

F (s) =
1− 2s

s2 + 2s+ 10

Solution: And once more,

F (s) = −2
s+ 1

(s+ 1)2 + 9
+

3

(s+ 1)2 + 9
⇒ f(t) = −2e−t cos 3t+ e−t sin 3t.

(13) Use Laplace Transforms to solve the IVP

y(4) − y = 0; y(0) = 1, y′(0) = 0, y′′(0) = −2, y′′′(0) = 0.



Solution: We take the Laplace of the IVP, solve for Y , and take the inverse transform,

−��
��*

0
y′′′(0)− s��

��*−2
y′′(0)− s2��

�*0
y′(0)− s3���*

1
y(0) + s4Y − Y = 0⇒ (s4 − 1)Y = s3 − 2s

⇒ Y =
s(s2 − 1)− s

s4 − 1
=

s

s2 + 1
− s

s4 − 1
=

s

s2 + 1
− s

2

[
1

s2 − 1
− 1

s2 + 1

]
=

3

2

s

s2 + 1
− 1

2

s

s2 − 1

⇒ y =
3

2
cos t− 1

2
cosh t

(14) Use Laplace Transforms to solve the IVP

y′′ + 4y′ =

{
t 0 ≤ t < 1,

0 t ≥ 1
; y(0) = y′(0) = 0

Solution: We first put it into a form that we can take the Laplace of

y′′ + 4y′ = t−

{
0 0 ≤ t < 1,

t t ≥ 1
= t− tu1(t) = t− (t− 1)u1(t)− u1(t).

Then we take the Laplace of the IVP

(s2 + 4s)Y =
1

s2
− e−s 1

s2
− e−s1

s
⇒ Y =

1

s2(s2 + 4s)
− e−s s+ 1

s2(s2 + 4s)
.

Then we take the partial fractions, however we have to do two. Yea yea, I know it’s a pain, but I’m
not the one who made the problem.

A

s
+
B

s2
+
C

s3
+

D

s+ 4
⇒ As3+4As2+Bs2+4Bs+Cs+4C+Ds3 = (A+D)s3+(4A+B)s2+(4B+C)s+4C = 1.

Then the constants are C = 1/4, B = −1/16, A = 1/64, D = −1/64. For the second partial fractions
we have

(A+D)s3 + (4A+B)s2 + (4B + C)s+ 4C = s+ 1

Then the constants are C = 1/4, B = 3/16, A = −3/64, D = 3/64. Putting these back into the
equation gives us

Y =
1/64

s
− 1/16

s2
+

1/4

s3
− 1/64

s+ 4
− e−s

[
−3/64

s
+

3/16

s2
+

1/4

s3
+

3/64

s+ 4

]
⇒ y =

1

64
− 1

16
t+

1

8
t2 − 1

64
e−4t − u1(t)

[
− 3

64
+

3

16
(t− 1) +

1

8
(t− 1)2 +

3

64
e−4(t−1)

]
.

(15) Use Laplace Transforms to solve the IVP

y′ + ay = eλt; y(0) = c,

with a 6= 0. What happens to the solution when λ+ a 6= 0? What about for λ+ a = 0?
Solution: First lets take the Laplace Transform of the IVP

−���*
c

y(0) + sY + aY =
1

s− λ
⇒ (s+ a)Y = c+

1

s− λ
⇒ Y =

c

s+ a
+

1

(s+ a)(s− λ)

Lets assume that λ+ a 6= 0, then we proceed as usual

Y =
c

s+ a
+
−1

a+ λ

[
1

s+ a
− 1

s− λ

]
=

(
c− 1

a+ λ

)
1

s+ a
+

1

a+ λ
· 1

s− λ

y =

(
c− 1

a+ λ

)
e−at +

1

a+ λ
eλt if λ+ a 6= 0

Now, if λ+ a = 0, λ = −a, then

Y =
c

s+ a
+

1

(s+ a)2
⇒ y = ce−at + te−at.


