MATH 222 RAHMAN Week 10

6.3 STEP FUNCTIONS (DISCONTINUOUS FORCING)

Recall the definition for a step function
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Lets find the Laplace Transform
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Now lets consider a forcing function where there is some variable forcing f(t) after time ¢ = ¢, then we have
that the forcing is f(t — c¢)u.(t). Lets find the Laplace Transform of this
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Problems 3 and 6 involve plotting and I showed how to plot them on the lecture. I'll put the other ones
here
13) Here f(t) = (t — 2)%ua(t) and L{t?} = 2/s3, then L{f(t)} = 2e72%/s3.
18) Here L{t} =1/s% so L{f(t)} =1/s* —e%/s%.
22) Here ¢ = 2, so G(s) = 2/(s?> — 2%), then g(t) = sinh 2¢, hence f(t) = ua(t) sinh(2(t — 2)).

6.4 IVPs wiTH DISCONTINUOUS FORCING

We discussed discontinuous forcing last time. Lets now do a bunch of problems
1) Here f(t) = 1 — usx(t), then the Laplace Transform of the full IVP is
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4) We take the Laplace Transform of the full TVP
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6) We take the Laplace Transform
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8) Taking the Laplace Transform gives
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Now we do the partial fractions
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§+?+m = As°+As +1AS+BS +BS+ZB+CS +Ds* = (A+O)S +(A+B+D)S +<B+5A/4)S+ZB =1.
Then we get B =4/5, A= -16/25, C = 16/25, and D = —4/25, then
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That final term in the brackets is going to take more effort
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Then the solution is
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6.5 IMPULSE FUNCTIONS

An impulse is a change of momentum over a period of time, such as hitting a baseball. The momentum
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Figure 6.5.1
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here is (I prefer using e instead of 7)
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p= / g(t)dt = / —dt=1.
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Notice that we can make 7 smaller and keep the momentum at p = 1 such as in the following plot In fact,
o]

lim g(t)dt = 1.
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Figure 6.5.2
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Notice this is 0 everywhere except at ¢ = 0. Now if we can do this at ¢ = 0, we can define a “function” with
this porperty for any ¢t = ¢y,
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called the Dirac delta function, however this isn’t a function, but rather a distribution. Doing this for ¢ty > 0
will allow us to employ Laplace Transforms. Notice that we can write the delta function as the following

limit,
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Now we take the Laplace
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Now lets do some problems
4) We solve the IVP and plot it (on the left)
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8) We solve the IVP and plot it (on the right)
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=y = sin(2(t — 7/4))ur/4(t) = Uy 4(t) cos 2t.
11) As per usual,
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We employ partial fractions,
S _As+B Cs+ D
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= As® + 245> + 2As + Bs®> + 2Bs+ 2B+ Cs* + Cs + Ds* + D = s

= (A4 C)s* + (2A+ B+ D)s* + (2A+ 2B+ C)s+ (2B + D) = s.
From this we get A =1/5=-C, B=2/5, and D = —4/5, so
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Furthermore,
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