MATH 222 RAHMAN Week2

2.1 LINEAR EQUATIONS; METHOD OF INTEGRATION FACTOR

Consider the ODE % -4 @ = 0. This is clearly not separable.

Now consider the ODE t2 dw + 2xt = t. This too is not separable, but we can make it separable by
employing a small trick. Notlce that t292 + 22t = 4 (xt?), so the ODE becomes, 4 (zt?) = ¢, which is
separable. This is what is referred to as an “exact ODE” So we get,

d 1 1
7 —(xt?) =t = d(2t?) = tdt = / d(zt?) = /tdt = xt? = 5t2 +C=az=3+ ct=2.

This is the idea. If we encounter an equation that isn’t separable we need to change it in some way that
makes it separable.
Lets look at the first equation again and write it in differential form, i.e.

dy _y  f=)

=0= zdy — ydx + f(x)dz = 0.
dr =z

Notice, that xdy — ydz is almost quotient rule, we just need to finish the denominator, which we notice
should be 22, so let’s multiply through by 1/x2,

xdy;ydx+fif)d 0:>d() —f(f)dx:/d(%):—/%d
[y [ 10

This is called the method of “integrating factors”, where 1/22 is called the “integrating factor”, which
are delineated in the following definition.

Definition 1. Consider an ODE of the form

Wt )y = gle) (1)
We call p(x) an integrating factor if
p() Bi +p(2)y = g(w)}
is an exact ODE, i.e.
) |+ 9ol = 9(0)| & (o) = ue)g(a)i @)

All we need to do now is figure out what p(z) is in general, but fortunately Leibniz already did that for

) = exp ( A p(é)d€> . 3)

In the following examples we use the method of integrating factors to solve our ODE,

5¢) The integrating factor is u = exp (ft 72d5> = e~ 2. Now, we use our method to get,
ey = 3/e_tdt = —3/e_tdt =3¢ '+ C=y=—3e" +Ce?.
Now, notice if C >0, y - o0 ast — oo, and if C <0, y - —oo0 as t — oo.

10c) The integrating factor is p = exp (ft —l/sds) = 1/t, then

o+l

= /e_tdt: —e '+ C=y=te " +Ct

Now, notice if C =0,y - 0 ast — oo, and if C # 0, y — oo as t — o0.
1



21b) The integrating factor is y = exp (ft —(1/2)ds) = ¢~!/2, Then,

4
ety =2 / e 2 costdt = 56_”2(2 sint — cost) + C.
We did the integration in class. Know how to do the integration! Then, we get
4.0 t)2
y= g(2s1nt —cost) + Ce'’=.

From the initial condition we get C' = a 4+ 4/5. We see that the behavior of the system changes at
C =0,s0a9 =—4/5. Now, when a = —4/5, y is oscillatory as t — 0, specifically y — %(2 sint—cost).
Furthermore, if a < —4/5, y — —o0, and if a > —4/5, y — cc.

30) The integrating factor is u = exp (f ft ds) = e~ !. Then we get

ety = / (e_t +3et sint) dt =—e ' +3 / e tsintdt.

We employ integration by parts for [e~'sintdt with u = e~ = du = —e~'dt and dv = sintdt =
v = —Cost,

/e*t sintdt = —e tcost + /e*t cos tdt
We employ by parts again with u = e™! = du = —e~!dt and dv = costdt = v = sint,
—t —t —t —t —t |- 1.
e 'sintdt = —e "cost+e 'sint — | e ‘sintdt = [ e “sintdt = —56 cost+ 56 sint.

Plugging this back into our ODE gives,

3 3 3 3
ety =—et— ie*tcosH— ge*tsint—i—C’ =y=-1— 5 cost + isint—i—Cet.

The initial condition gives us yo = —1 — 3/2 + C = —5/2 + C, then our solution is

3 3
éy:—1—5cost+§sint+(yo+5/2)et. (4)

Then for y > —5/2, y — o0 as t — co. For y < —5/2, y — —o0 as t — co. However, for yo = —5/2,
y oscillates, but remains finite.



2.3 MORE MODELING PROBLEMS

There hasn’t been any EE problems yet in the book, so lets do one,

Ex:

Consider a Resister-Inductor (RL) circuit in series. Let x be the current at time ¢. Let V' be the
voltage across the voltage source, R be the resistance of the resistor, and L be the inductance of
the inductor. Now, the voltage drop through the resistor is: Vz = Rz, and the voltage through the
inductor is Vi, = Ldz/dt. Now, by Kirchoff’s law, we know that the voltages in a loop sum up, so
Ldxz/dt + Rx =V, and in standard form this is,

dr R \%

@ Tt T

We can solve this via separation,

/—daz —/dté—Eln K—Eac =t+Cop=1In K—Ex ——Et—i—C
—Rx/L+V/L R \L L) 0 L L) L !

= K _ E.T = exp (Rt + Cl> — eth/Lecl — koeth/L

L L L
RV —Rt/L _V —Rt/L
:>Lx_L koe :>x—R kie .

Notice that we could use separation because V was constant, however if V' = V(¢), then we would
have to use integrating factor.

The next couple of examples are from the book,

3) Notice that there are two processes delineated in the problem. And the second process starts as soon

as the first process ends. So we need to solve the first problem and then use information from the
first problem to solve the second problem.

Process 1: Let x be the amount of salt in 1b at time ¢ min. The rate in will be (1/2) 1b/gal x
2 gal/min = 1 Ib/min. And the rate out is /200 Ib/gal x 2 gal/min = 2/50 Ib/min. Now notice
that there is no salt in the tank when the process starts, so our full IVP becomes,
dz x
el T
dt 50"
Now we solve this via separation,

(0) = 0.

dx
/1_36/50 = /dt = —50In(1 — 2/50) =t + Co = In(1 — 2/50) = —t/50 + C4

—t/50 —t/50

X
1——=k
= 50 0€

Now, we solve for the constant from the initial condition,

= x =50 — ke

x(0)=50—k1—0:>k;1:50:>:c:50(1—e—t/50).

Now, since the process is stopped at ¢ = 10 min. we need to calculate the amount at that time,
2(10) = 50 (1 — e /).

Process 2: Now, in order to distinguish this process from the previous one, let y be the amount
of salt in 1b at time ¢ min. Notice, no more salt is entering, so the rate in is zero. The rate out will

be the same as before y/50 1b/min. For our initial conditions, notice that where this process begins
the other one had ended, so y(0) = x(10).

dy _y. _ —1/5
= 50,y(o)_50(1 e )

Again, we solve this via separation,

1
Iny=——t = ke /50,
ny 50 +C=y e

From the initial condition we have,

y(0) = k = 50 (1 - e—1/5) =y =50 (1 - e—1/5) e~ t/50,



Finally, the process stops after another 10 minutes, so y(10) = 50 (1 — 6_1/5) e 1/5,

8) For this problem we first realize that every year the bank statement increases by k $ from what the
person deposits. However, there is also an interest being earned, which is on the total amount. So,
every year the increase due to interest is S $. This means the total rate is going to be, dS/dt = k+rS.
And the initial condition will be S(0) = 0.

(a) We solve this via separation,

ds 1
/k_’_rS:/dt:>;ln(quTS):t+C’0éln(k+rS):rt+Cl:>k+rS:C'26Tt.

From the initial condition we get,
k
S(O)zO:CQ:k:S:;(e”—l).

(b) For this problem we solve for S(40) = 10® with » = .075. Plugging all these into the equation
gives k = (.075 x 106)/[exp(.075 x 40) — 1].
(¢) Plug in the values they give and then ask wolfram alpha to solve it.

Ex: Consider two connected 100 gal tanks. Tank 1 initially has 0 1b of salt and Tank 2 has 1 Ib of salt.
We start pumping 1/2 1b/gal of salt into Tank 1 at a rate of 2 gal/min. The mixture leaves Tank 1
and enters Tank 2 then finally leaves Tank 2 all at the same rate. Find the amount of salt for any
time in Tank 1 and Tank 2.

Solution: Whenever you get something like this, it’s best to separate the processes and deal
with them individually. Let the amount of salt in Tank 1 be x and in Tank 2 be y. Notice that the
rate of the amount of salt entering Tank 2 must be equivalent to the rate of salt leaving Tank 1.

Now, we can make a table to visualize this.
Rate in Rate out ODE

Tank 1 11b/min | /50 Ib/min | dz/dt =1—x/50; z(0) =0
Tank 2 || /50 Ib/min | y/50 Ib/min || dz/dt = /50 — y/50; y(0) =1
Then we solve the ODEs
Tank 1:
d —t
50/ %0 f o= /dt = —501n|50—z| = t+Cy = In |50—=z| = %—FC& = 50—z = ke V% = 2 = 50—ke /50,
Plugging in our initial condition gives, (0) = 50 — k = 0 = k = 50. Then our solution is,

2 =50 (1 - e—t/50)

Tank 2:

dy Y —t/50
22 T ] e t/50,
at " 50 €

The integrating factor is u = exp ( f k ds/50) = ¢!/59. Plugging this into our integrating factor

formula gives,
/d(et/soy) = /(et/so - Ddt = et/%0y = 50et/°0 — t + C = y = 50 — te /%0 4 Ce /0,

Plugging in our initial condition gives us y(0) =50+ C =1 = C' = —49. Then our solution is,
y =50 — te=t/50 — 49¢t/50,



