
Math 222 Rahman Week 3

3.1 Homogeneous Equations with Constant Coefficients

It should be noted that while this chapter is on second order ODEs, we will develop the theory for higher
order ODEs because the theory is exactly the same! Let us first go over some definitions we might not know,

Definition 1. An ODE is homogeneous if it is of the form

pn(t)y(n)(t) + pn−1(t)y(n−1)(t) + · · ·+ p2(t)y′′(t) + p1(t)y′(t) + p0(t)y(t) = 0. (1)

So an example of a second order homogeneous ODE would be
p2y
′′ + p1y

′ + p0y = 0.

Definition 2. An ODE is said to be nonhomogeneous if it’s not homogeneous.

An example of a second order nonhomogeneous ODE would be p2y
′′ + p1y

′ + p0y = f(t). In this section
we will only deal with constant coefficients which mean each pn(t) = an where a0, a1, . . . , an−1, an are all
constants.

Now, we consider a special case of Eq. (1): y′ + ay = 0 We know how to solve this, we simply use
separation to get y = ke−ax. So, we can “guess” that the form of the solutions for Eq. (1) with constant
coefficients will be y = kerx. Now, we plug this guess in to see what the solutions exactly are. Notice that
the nth derivative is, y(n) = krnerx, so plugging this into (1) with pn(t) = an gives,

ankr
nerx + an−1kr

n−1erx + · · ·+ a2kr
2erx + a1kre

rx + a0ke
rx = 0

⇒ kerx
(
anr

n + an−1r
n−1 + · · ·+ a2r

2 + a1r + a0
)

= 0.

Now, all we have to do is solve the polynomial equation. Since this is an nth order polynomial, there will be
n solutions, i.e. r = r1, r2, . . . , rn−1, rn. Since the polynomial equation has n solutions, the ODE will also
have n solutions, so by superposition we get,

y = k1e
r1x + k2e

r2x + · · ·+ kn−1e
rn−1x + kne

rnx.

We have just proved a theorem,

Theorem 1. Consider the ODE

any
(n)(x) + an−1y

(n−1)(x) + · · ·+ a2y
′′(x) + a1y

′(x) + a0y(x) = 0. (2)

such that a0, a1, . . . , an−1, an are constants. Then,

y = k1e
r1x + k2e

r2x + · · ·+ kn−1e
rn−1x + kne

rnx, (3)

where k1, k2, . . . , kn−1, kn are constants and r1, r2, . . . , rn−1, rn satisfy the polynomial equation

anr
n + an−1r

n−1 + · · ·+ a2r
2 + a1r + a0 = 0, (4)

only if r1 6= r2 6= · · · 6= rn−1 6= rn.

Definition 3. We call Eq. (4) the characteristic equation of ODE (2), and the polynomial is called the
characteristic polynomial.

Now, lets do a few problems from the book,

1) The characteristic polynomial is r2 + 2r − 3, so

r2 + 2r − 3 = 0⇒ (r + 3)(r − 1) = 0⇒ r = 1,−3⇒ y = c2e
x + c2e

−3x.

7) The characteristic polynomial is r2 − 9r + 9, so

r =
1

2
(9± 3

√
5)⇒ y = c1e

1
2 (9+3

√
5)x + c2e

1
2 (9−3

√
5)x.

12) The characteristic polynomial is r2 + 3r, so

r = 0,−3⇒ y = c1 + c2e
−3x,

and from the initial conditions we get y = −1− e−3x.
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18) Here they give us the solution and we have to extract the ODE. Notice that from the solution we
deduce

r = −1

2
,−2⇒ (r +

1

2
)(r + 2) = r2 +

5

2
r + 1 = 0⇒ y′′ +

5

2
y′ + y = 0.

21) This is kind of a silly question, but since there is a similar one on the homework lets do it. We solve
the ODE as per usual,

r2 − r − 2 = (r − 2)(r + 1) = 0⇒ r = −1, 2⇒ y = c1e
−x + c2e

2x.

From the initial condition we have the equations c1 + c2 = α and 2c2 − c1 = 2, so 3c2 = α+ 2. This
means that if α = −2, as t → ∞, y → 0. However, for the second part of the problem there are no
solutions that always blow up because we have a negative exponential term that will persist.

24) For this problem the ODE itself has the parameter α. This leads to interesting conclusions without
even solving, but the easiest most intuitive way to come to those conclusions will be by solving, even
though it is more tedious and time consuming. We solve the ODE,

r2 + (3− α)r − 2(α− 1) = 0⇒ (r − (α− 1))(r + 2) = 0⇒ r = −2, α− 1⇒ y = c2e
−2x + c2e

(α−1)x.

So, for α < 1, y →∞. If α = 1, y → c2, and if α > 1, and y → ±∞ only if c2 6= 0.

2.7 Euler’s Method

Numerical solutions to ODEs are all about approximating a derivative and using that to approximate the
solution. What is the definition of the derivative and how do we approximate it? Think back to Calc I, we
derived the definition of the derivative by using a slope and watching what happens when ∆t→ 0. Lets use
the formula for slope again for first order ordinary differential equations,

y′(t) = f(t, y)⇒ f(t, y) ≈ ∆y

∆t
=
y − y0
t− t0

.

Now lets evaluate f at t1, y1, then we get,

f(t1, y1) ≈ y1 − y0
t1 − t0

⇒ y1 − y0 ≈ (t1 − t0)f(t0, y0)⇒ y1 ≈ y0 + (t1 − t0)f(t0, y0).

Look at that! We just developed a formula to approximate y at t1 by using the information we had for the
system at t0. If we can approximate the data at t1 by using the previous time (i.e. t0), why can’t we do
this for any time? That is we can approximate y at tn+1 via the formula, yn+1 ≈ yn + ∆tf(tn, yn). The
standard way to write this however is with, h = ∆t, basically a renaming and we usually use y0 = y(t0), i.e.
the initial condition, and we also drop the ≈ and us =. So our general formula is,

yn+1 = yn + hf(tn, yn); y0 = y(t0). (5)

When debugging your codes use the following example, and make sure your values are close to mine. Your
values might be ever so slightly off, but not more than say .0001.

(1) f(t, y) = 3 + t− y, which gives us the equation yn+1 = yn + h · (3 + tn − yn) where y0 = 1.
(a) Here we have h = 0.1, so we have the following t’s. We get them just by starting at t0

and incrementing. t0 = 0, t1 = 0.1, t2 = 0.2, t3 = 0.3, t4 = 0.4. Then we have, y1 =
y0 + h · (3 + t0 − y0) = 1 + (0.1)(3 + 0 − 1) = 1.2, y2 = y1 + h · (3 + t1 − y1) = 1.39,
y3 = y2 + h · (3 + t2 − y2) = 1.571, and y4 = y3 + h · (3 + t3 − y3) = 1.7439. Lets put this in a
table to make it look pretty,
n 0 1 2 3 4
tn 0 0.1 0.2 0.3 0.4
yn 1 1.2 1.39 1.571 1.7439



(b) Hopefully part a gave you a good idea of how we do these problems, so I’ll just give the table
of values I received when running my code on matlab (remember h = 0.05):
n 0 1 2 3 4 5 6 7 8
tn 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
yn 1 1.1 1.1975 1.2926 1.3855 1.4762 1.5649 1.6517 1.7366

(c) Here h = 0.025,
n 0 1 2 3 4 5 6 7 8
t 0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
y 1 1.05 1.0994 1.1481 1.1963 1.2439 1.2909 1.3374 1.3833

n 9 10 11 12 13 14 15 16
t 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4
y 1.4288 1.4737 1.5181 1.562 1.6055 1.6484 1.6910 1.7331

(d) Next we solve the equation via integrating factors to get y = 2 + t − e−t, and calculating the
points gives us the following comparison,

h t = 0.1 0.2 0.3 0.4
0.1 y(t) = 1.2 1.39 1.571 1.7439
0.05 y(t) = 1.1975 1.3855 1.5649 1.7366
0.025 y(t) = 1.1963 1.3833 1.562 1.7331
Exact y(t) = 1.19516 1.38127 1.55918 1.72968


