
Math 222 Rahman Week 6

3.5 Undetermined Coefficients

Consider the nonhomogeneous ODE

any
(n) + an−1y

(n−1) + · · · a2y′′ + a1y
′ + a0 = f(x). (1)

Notice that our usual solution won’t work, but maybe it’s part fo the solution. Suppose yp is a solution to
(1) that is linearly independent with respect to the solution the homogeneous ODE. Let y be the general
solution of (1). Lets plug in yc = y − yp in (1), then we get that yc is a solution to

any
(n) + an−1y

(n−1) + · · · a2y′′ + a1y
′ + a0 = 0. (2)

So, in fact yc is the solution to the homogeneous ODE, so y = yc + yp, where yc is the homogeneous part of
the solution and yp is the purely nonhomogeneous part of the solution.

Definition 1. The characteristic solution, yc, is the general solution of (2) and the particular solution, yp,
is the additional solution to (1).

Case1: No term in f(x) is the same as any term in yc. Then yp is a linear combination of terms of f(x)
and their derivatives.

• f1(x) = xn ⇒ y1p = Anx
n + An−1x

n−1 + · · · + A1x + A0. If our f is a polynomial, the particular
solution will be of the form of the most general polynomial of order of the polynomial in f .

• f2(x) = emx ⇒ y2p = kemx. This one is easy.
• f3(x) = cos(mx) or sin(mx), then y3p = A cos(mx) + B sin(mx). If we have sine or cosine our

particular solution will be a linear combination of sines and cosines.
• f(x) = f1(x) + f2(x) + f3(x) ⇒ yp = y1p + y2p + y3p . If we have a combination of these simple

examples then we just combine all of their respective particular solutions.
• f(x) = f1(x)f2(x)f3(x)⇒ yp = y1py2py3p . We do the same sort of thing with products.

Case 2: f(x) contains terms that are xn times terms in yc, i.e. if u(x) is a term of yc and f(x) contains
xnu(x). Then yp is as usual but multiply by “x”.

• Consider yc = g(x) + emx and f(x) = l(x) + xnemx, where we don’t care about g(x) and l(x) – we
are just thinking of them as place holders. Then our particular solution is yp = h(x) + (Anx

n+1 +
An−1x

n + · · ·+A0x)emx.
• Consider a similar case except with sine, also equivalently cosine. yc = g(x) + sin(mx) and f(x) =
l(x)xn sin(mx), then our particular solution is, yp = h(x)+(Anx

n+1+An−1x
n+· · ·+A0x)(B cos(mx)+

C sin(mx)).

Case 3: If yc contains repeated roots with the highest being of order λ (i.e. xλ) and f(x) contains terms
xn times the repeated root terms, then multiply out by xλ+1.

• yc = g(x) + xλ + · · · + emx and f(x) = l(x) + xnemx, then our particular solution is yp = h(x) +
xλ+1(Anx

n +An−1x
n−1 + · · ·+A1x+A0)emx.

The idea for the repeated cases is to get rid of all the repeats while preserving the same amount of
constants. The cases that are outlined above are very general, so I made a table of the type of expressions
we would most likely come across

Case Characteristic Solution Repeat Form of Particular Solution

Case 2
yc = c1e

r1x + c2e
r2x xner1x yp = x(Anx

n + · · ·+Ax +A0)er1x

yc =ξx (A cos(θx) +B sin(θx)) xneξx cos(θx) yp = x(Anx
n + · · ·+Ax +A0)eξx cos(θx)

Case 3 yc = (c1 + c2x)eλx xneλx yp = x2(Anx
n + · · ·+Ax +A0)eλx

1



It can be tricky to figure out what yp has to be in the beginning, but hopefully some practice problems
will help us.

6) r2 + 2r = r(r + 2) = 0 ⇒ r = 0,−2, so yc = c1 + c2e
−2t. Since f(t) = 3 + 4 sin 2t, our initial

guess for the particular solution is yp = A+B cos 2t+ C sin 2t, but this would be incorrect because
we already have a lone constant in our characteristic solution, so our actual particular solution is
yp = At+B cos 2t+ C sin 2t. Plugging this into the ODE gives,

4(C −B) cos 2t− 4(B + C) sin 2t+ 2A = 3 + 4 sin 2t.

Matching the terms gives 2A = 3⇒ A = 3/2 immediately. From the cosine term we get 4(C −B) =
0 ⇒ C = B because there is no cosine term on the right hand side. From the sine terms we have
−4(B + C) = 8B = 4 ⇒ C = B = −1/2, so our particular solution is yp = 3

2 t −
1
2 cos 2t − 1

2 sin 2t.
Then our general solution is

y = c1 + c2e
−2t +

3

2
t− 1

2
cos 2t− 1

2
sin 2t.

7) r2 + 9 = 0⇒ r = ±3i, then yc = A cos 3t+B sin 3t. Since f(t) = t2e3t + 6, yp = (At2 +Bt+C)e3t,
and there are no repeats. Plugging this into the ODE gives

2Ae3t + 6(2At+B)e3t + 18(At2 +Bt+ C)e3t + 9D = t2e3t + 6

⇒ 18At2e3t + (12A+ 18B)te3t + (2A+ 6B + 18C)e3t + 9D = t2e3t + 6.

Matching terms immediately gives us 9D = 6 ⇒ D = 2/3. From the t2e3t we get 18A = 1 ⇒ A =
1/18. The other terms are zero so we get, 12/18 + 18B = 0⇒ B = −1/27, and 1/9 + 2/9 + 18C =
0⇒ C = 1/162. So, our particular solution is yp = (t2/18− t/27+1/162)e3t+2/3. Then our general
solution is

y = A cos 3t+B sin 3t+

(
1

18
t2 − 1

27
t2 +

1

162

)
e3t +

2

3
.

18) r2−2r−3 = (r−3)(r+1) = 0⇒ r = 3,−1⇒ yc = c1e
3t+c2e

−t. Since f(t) = 3te2t, yp = (At+B)e2t

and there are no repeats. Plugging this into the ODE gives

4Ae2t + 4(At+B)e2t − 2Ae2t − 4(At+B)e2t − 3(At+B)e2t = −3Ate2t + (2A− 3B)e2t = 3te2t.

Matching the te2t gives −3A = 3⇒ A = −1. The other term is zero, so we get −2− 3B = 0⇒ B =
−2/3. This gives us yp = (−t− 2/3)e2t, then our general solution is

y = c1e
3t + c2e

−t +

(
−t− 2

3

)
e2t.

The first initial condition gives y(0) = c1 + c2 − 2/3 = 1 ⇒ c1 + c2 = 5/3, and he second gives
y′(0) = 3c1 − c2 − 1− 4/3 = 0⇒ 3c1 − c2 = 7/3. Now we add the equations to get 4c1 = 4⇒ c1 =
1⇒ c2 = 2/3. Then our solution is

y = e3t +
2

3
e−t +

(
−t− 2

3

)
e2t.

24) For this problem we only need the form of the particular solution. In order to get that we still
have to compute the characteristic solution: r2 + 2r + 2 = 0 ⇒ r = −1 ± i, which gives yc =
e−t(c1 sin t+ c2 cos t). From f(x) we can guess a particular solution of

yp
?
= e−t[A+B cos t+ C sin t+ (D2t

2 +D1t+D0) cos t+ (E2t
2 + E1t+ E0) sin t]

?
= e−t[A+ (B2t

2 +B1t+B0) cos t+ (C2t
2 + C1t+ C0) sin t]

However, this would be wrong due to the repeats. So, we need to multiply the cosine and sine block
out by t

yp = e−t[A+ t(B2t
2 +B1t+B0) cos t+ t(C2t

2 + C1t+ C0) sin t]



3.6 Variation of Parameters

Consider the ODE

y′′ + p(x)y′ + q(x)y = f(x) (3)

and suppose we have the following characteristic solution

yc = c1y1 + c2y2 (4)

What if for the full solution to (3) we can think of the “constants” as functions; i.e. y = u1(x)y1 + u2(x)y2.
We can use this as an ansatz and plug it into the ODE. For the derivative we get

y′ = u′1y1 + u1y
′
1 + u′2y2 + u2y

′
2.

We only want one derivative in our final equation so lets force

u′1y1 + u′2y2 = 0 (5)

so y′ = u1y
′
1 + u2y

′
2, then

y′′ = u′1y
′
1 + u′2y

′
2 + u1y

′′
1 + u2y

′′
2 .

Plugging this into 3 gives

u1y
′
1 + u′2y

′
2 + u1[

���
���

���
�:0

y′′1 + p(x)y′1 + q(x)y1] + u2[
���

���
���

�:0

y′′2 + p(x)y′2 + q(x)y2] = f(x)

Notice that the terms in brackets cancel because they are solutions to the nonhomogeneous ODE. This gives
us our second equation

u′1y
′
1 + u′2y

′
2 = f(x) (6)

From (5) we get u′1 = −u′2y2/y1. We plug this into 6 in order to get an expression for u2

−u′2y′1
y2
y1

+ u′2y
′
2 = f(x)⇒ −u′2y′1y2 + u′2y

′
2y1 = f(x)y1 ⇒ u′2 =

f(x)y1
y′2y1 − y′1y2

=
f(x)y1
W (y1, y2)

.

Now we plug this into our expression for u1 to get

u′1 = − f(x)y2
W (y1, y2)

Then we integrate to get

u1 = −
∫

f(x)y2
W (y1, y2)

dx (7)

u2 =

∫
f(x)y1
W (y1, y2)

dx (8)

Then plugging back into our original ansatz gives us

y = −y1
∫

f(x)y2
W (y1, y2)

dx+ y2

∫
f(x)y1
W (y1, y2)

dx

Theorem 1. Suppose the ODE (3) has a unique solution on I open. Assume it has the characteristic
solution (4). Then

y = −y1
∫

f(x)y2
W (y1, y2)

dx+ y2

∫
f(x)y1
W (y1, y2)

dx (9)

is the general solution.



Now we could just use this theorem for all our problems. The only downfall is that we will have to
memorize this formula. So, just in case you forget the formula, do know how to work out the derivation, and
try to use the derivation on specific problems.

2) r2 − r − 2 = (r − 2)(r + 1) = 0 ⇒ yc = c1e
2t + c2e

−t, so y1 = e2t and y2 = e−t. First we calculate
the Wronskian

W (y1, y2) =

∣∣∣∣ e2t e−t

2e2t −e−t
∣∣∣∣ = −3et.

Now lets compute our two integrals separately∫
f(t)y2

W (y1, y2)
dt =

∫
e−t · 2e−t

−3et
dt = −2

3

∫
e−3tdt = −2

9
e−3t + c3.

and ∫
f(t)y1

W (y1, y2)
dt =

∫
e2t · 2e−t

−3et
dt =

2

3

∫
dt = −2

3
t+ c4.

Then plugging this back into (9) gives

y = −e2t
[
−2

9
e−3t + c3

]
+ e−t

[
2

3
t+ c4

]
=

2

9
e−t − 2

3
te−t − c3e2t + c4e

−t = c5e
−t − 2

3
te−t − c3e2t.

10) r2 − 2r + 1 = (r − 1)2 = 0 ⇒ yc = c1e
t + c2te

t, then y1 = et and y2 = tet, then we compute the
Wronskian

W (y1, y2) =

∣∣∣∣ et tet

et et + tet

∣∣∣∣ = e2t.

Now we compute the two integrals∫
f(t)y2

W (y1, y2)
dt =

∫
tet · et/(1 + t2)

e2t
dt =

∫
tdt

1 + t2
=

1

2
ln(1 + t2) + c3.

and ∫
f(t)y1

W (y1, y2)
dt =

∫
et · et/(1 + t2)

e2t
dt =

∫
dt

1 + t2
= tan−1 t+ c4

Plugging this into (9) gives

y = −1

2
et ln(1 + t2) + tet tan−1 t− c3et + c4te

t.

11) r2 − 5r + 6 = (r − 3)(r − 2) = 0⇒ yc = c1e
3t + c2e

2t, so y1 = e3t and y2 = e2t. The Wronskian is

W (y1, y2) =

∣∣∣∣ e3t e2t

3e3t 2e2t

∣∣∣∣ = −e5t

Plugging this into (9) gives us

y = −e3t
∫
e2tg(t)

−e5t
dt+ e2t

∫
e3tg(t)

−e5t
dt = e3t

∫
e−3tg(t)dt− e2t

∫
e−2tg(t)dt

14) We must first convert this into standard form

y′′ − t+ 2

t
y′ +

t+ 2

t2
y = 2t.

The Wronskian is

W (y1, y2) =

∣∣∣∣ t tet

1 tet + et

∣∣∣∣ = t2et.

Then we plug into (9) to get

y = −t
∫
tet · 2t
t2et

dt+ tet
∫
t · 2t
t2et

dt = −t
∫

2dt+ tet
∫

2e−tdt = −2t2 + c1tc2te
t.

So the particular solution is

yp = −2t2



20) We convert this to standard form

y′′ +
1

x
y′ +

x2 − 0.25

x2
y =

g(x)

x2
.

The Wronskian is

W (y1, y2) =

∣∣∣∣ x−1/2 sinx x−1/2 cosx
− 1

2x
−3/2 sinx+ x−1/2 cosx − 1

2x
−3/2 cosx− x−1/2 sinx

∣∣∣∣ = − 1

x

Then plugging into (9) gives

y = −x−1/2 sinx

∫
x−1/2 cosx · g(x)/x2

−1/x
dx+ x−1/2 cosx

∫
x−1/2 sinx · g(x)/x2

−1/x
dx

= x−1/2 sinx

∫
cosxg(x)

x
√
x

dx− x−1/2 cosx

∫
sinxg(x)

x
√
x

dx.


