
Math 222 Rahman Week 8 and 9

5.1 Power Series Review

Know it!

5.2 Series Solutions

Consider the ODE

y(n) + Fn−1(x)y(n−1) + · · ·+ F1(x)y′ + F0(x)y = Q(x). (1)

First lets define a few things.

Definition 1. A point x = x0 is said to be an ordinary point of (1) if Fn, . . . , F0, Q all have convergent
Taylor series in a neighborhood of x0. However, if at least one function does not satisfy this criterion, x = x0
is called a singular point.

For this section we consider the problem

P (x)y′′ +Q(x)y′ +R(x)y = 0; x = x0, (2)

where x = x0 is an ordinary point and R,Q, P are polynomials. We make the ansatz:

y =

∞∑
n=0

an(x− x0)n (3)

⇒ y′ =

∞∑
n=1

nan(x− x0)n−1 =

∞∑
n=0

(n+ 1)an+1(x− x0)n (4)

⇒ y′′ =

∞∑
n=1

n(n+ 1)an+1(x− x0)n−1 =

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− x0)n (5)

Then we plug this into the ODE (2) and try to solve for the “a’s”.
Lets do some problems,

3) (a) Plugging into the ODE gives

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− 1)n − (n+ 1)an+1x(x− 1)n − an(x− 1)n = 0.

So basically we’re stuck, unless ... we let x = 1 + (x− 1). Now we have like terms! Yay!

∞∑
n=0

(n+ 2)(n+ 1)an+2(x− 1)n − (n+ 1)an+1(x− 1)n − (n+ 1)an+1(x− 1)n+1 − an(x− 1)n = 0.

By matching like terms we get

x0 : 2a2 − a1 − a0 = 0⇒ a2 =
1

2
(a1 + a0),

xm : (m+ 2)(m+ 1)am+2 − (m+ 1)am+1 − (m+ 1)am = 0⇒ am+2 =
am+1 + am
m+ 2

.

Notice that we cannot solve for a1 and a0 because these are like our c1 and c2 where we have
to solve for them using initial conditions, if given.

(b) This means a0 = 0 gives one solution and a1 = 0 gives another,

a0 = 0⇒ a2 =
a1
2
⇒ a3 =

a1
2
⇒ a4 =

a1
4
· · · ⇒ y2 = (x− 1) +

1

2
(x− 1)2 +

1

2
(x− 1)3 +

1

4
(x− 1)4 + · · ·

a1 = 0⇒ a2 =
a0
2
⇒ a3 =

a0
6
⇒ a4 =

a0
6
· · · ⇒ y1 = 1 +

1

2
(x− 1)2 +

1

6
(x− 1)3 +

1

6
(x− 1)4 + · · ·

1



6) (a) Plugging into the ODE gives

∞∑
n=0

(n+ 2)(n+ 1)an+2(2 + x2)xn − (n+ 1)an+1x
n+1 + 4anx

n

=

∞∑
n=0

2(n+ 2)(n+ 1)an+2x
n + (n+ 2)(n+ 1)an+2x

n+2 − (n+ 1)an+1x
n+1 + 4anx

n = 0.

By matching terms we get

x0 : 4a2 + 4a0 = 0⇒ a2 = −a0

x1 : 12a3 + 3a1 = 0⇒ a3 = −1

4
a1

xm : 2(m+ 2)(m+ 1)am+2 +m(m− 1)am −mam + 4am = 0⇒ am+2 = − m2 − 2m+ 4

2(m+ 2)(m+ 1)

(b) Now we find the first few terms of our two solutions

a0 = 0⇒ a2 = a4 = · · · = 0, so a3 = −1

4
a1 ⇒ a5 =

7

160
a1 ⇒ y2 = x− 1

4
x3 +

7

160
x5 + · · ·

a1 = 0⇒ a3 = a5 = · · · = 0, so a2 = −a0 ⇒ a4 =
1

6
a0 ⇒ y1 = 1− x2 +

1

6
x3 + · · ·

11) (a) Plugging into the ODE gives

∞∑
n=0

(n+ 2)(n+ 1)an+2(3− x2)xn − 3(n+ 1)an+1x
n+1 − anxn

=

∞∑
n=0

3(n+ 2)(n+ 1)an+2x
n − (n+ 2)(n+ 1)an+2x

n+2 − 3(n+ 1)an+1x
n+1 − anxn = 0

Matching terms gives

x0 : 6a2 − a0 = 0⇒ a2 =
1

6
a0

x1 : 18a3 − 3a1 − a1 = 18a3 − 4a1 = 0⇒ a3 =
2

9
a1

xm : 3(m+ 2)(m+ 1)am+2 −m(m− 1)am − 3mam − am = 0⇒ am+2 =
1 + 3m+m2 −m
3(m+ 2)(m+ 1)

am =
m+ 1

3(m+ 2)
am

(b) For the first few terms we get

a0 = 0⇒ a2 = a4 = · · · = 0⇒ a3 =
2

9
a1 ⇒ a5 =

4

15
a3 =

8

135
a1 ⇒ y2 = x+

2

9
x3 +

8

135
x5 + · · ·

a1 = 0⇒ a3 = a5 = · · · = 0⇒ a2 =
1

6
a0 ⇒ a4 =

3

12
a2 =

1

24
a0 ⇒ y1 = 1 +

1

6
x2 +

1

24
x4 + · · ·



5.4 Euler’s Equation; Regular Singular Points

Consider the ODE

x2y′′(x) + αxy′(x) + βy(x) = 0 (6)

This has a singular point because if we put this into standard form we get

y′′ + α
1

x
y′ + β

1

x2
y = 0,

which violates the existence and uniqueness theorem at x = 0. We obviously don’t know how to deal with
this problem. But there is a similar problem that we do know how to deal with,

y′′(ξ) + ay′(ξ) + by(ξ) = 0 (7)

Basically we need to make a change of variables on x in order to get rid of the x′s in the coefficients. What
do we know that gives us 1/x every time we differentiate? ξ = lnx does the trick. Taking the derivatives
are a little different than what we are used to, but very intuitive due to Leibniz notation

dy

dx
=
dy

dξ

dξ

dx
=

1

x

dy

dξ
,

d2y

dx2
=
dy′

dx
=
dy′

dξ

dξ

dx
=

1

x

(
e−ξ

dy

dξ

)′
=

1

x

(
−e−ξ dy

dξ
+ e−ξ

d2y

dx2

)
=

1

x2

(
d2y

dξ2
− dy

dξ

)
Plugging this back into (6) gives us

d2y

dξ2
− dy

dξ
+ α

dy

dξ
+ βy = y′′ + ay′ + by = 0

To solve (7) we use the ansatz y = exp(rξ), so to solve (6) we use y = xr. Lets think of a slightly more
general second order ODE for this part

Ax2y′′ +Bxy′ + Cy = 0

Then plugging into this gives

Ax2[r(r − 1)]xr−2 +Bxrxr−1 + Cxr = Ar(r − 1)xr +Brxr + Cxr = 0⇒ Ar(r − 1) +Br + C = 0.

This is our characteristic polynomial of Euler’s equation. And we have the usual cases:

Cases Solution Comment
Distinct Roots y = c1x

r1 + c2x
r2

Repeated Roots y = (c1 + c2 ln |x|)xr because ξ = lnx
Complex Conjugate Roots y = xλ(A cos(µ lnx) +B sin(µ lnx)) where r = λ± iµ

Now lets do some problems

5) The characteristic polynomial is r(r − 1)− r + 1 = r2 − 2r + 1 = (r − 1)2 = 0, so we have repeated
roots r = 1, then y = (c1 + c2 ln |x|)x; x 6= 0.

12) The characteristic polynomial is r(r − 1) − 4r + 4 = r2 − 5r + 4 = (r − 1)(r − 4) = 0, then
y = c1x+ c2x

4; x 6= 0.
11) The characteristic polynomial is r(r − 1) + 2r + 4 = r2 + r + 4 = 0, then r = (−1± i

√
5)/2, so

y = |x|−1/2
[
A cos

(√
15

2
ln |x|

)
+B sin

(√
15

2
ln |x|

)]
.



There is one more small theoretical thing we have to discuss.

Definition 2. Suppose x = x0 is a singular point of the ODE

y′′ + P (x)y′ +Q(x)y = 0

If (x−x0)P (x) and (x−x0)2Q(x) have convergent Taylor series at x = x0, then x0 is called a regular singular point.
Otherwise it is called an irregular singular point.

Lets do one example of this

19) We convert this to standard form

y′′ +
x− 2

x2(1− x)
y′ − 3

x(1− x)
y = 0

So our singular points are x = 0, 1. Since these are polynomials it suffices to take the limit and see
if it converges,

x = 0 : lim
x→0

xP (x) = lim
x→0

x
x− 2

x2(1− x)
= lim
x→0

x− 2

x(1− x)
= ±∞

So, x = 0 is an irregular singular point.

lim
x→1

(x− 1)P (x) = lim
x→1

(x− 1)
x− 2

x2(1− x)
= lim
x→1

2− x
x

= 1X

lim
x→1

(x− 1)2Q(x) = lim
x→1

(x− 1)2
−3

x(1− x)
= lim
x→1

3(1− x)

x
= 0X

This means that x = 1 is a regular singular point.

5.5 Series Solutions; around regular singular points

In section 5.2 we did series solutions around ordinary points and in 5.4 we did simple solutions around
regular singular points. The ansatz we used in 5.4, in essence, kills off the singularities and allows us to solve
the problem. Lets use these two principles to solve a problem of the form

x2y′′ + xP (x)y′ +Q(x)y = 0; x0 = 0, (8)

or more generally an equation that can be transformed into that form. Lets use the ansatz

y = xr
∞∑
n=0

anx
n =

∞∑
n=0

anx
r+n

⇒ y′ =

∞∑
n=0

(r + n)anx
r+n−1

⇒ y′′ =

∞∑
n=0

(r + n)(r + n− 1)anx
r+n−2

These problems are quite lengthy, so we’ll only do two.

3) (a) We show x = 0 is a regular singular point by taking the limit

lim
x→0

x2 ·Q(x) = x2 · 1

x
= 0X

(b) Plugging our ansatz and its derivatives into the ODE gives us
∞∑
n=0

(r + n)(r + n− 1)anx
r+n + anx

r+n+1 = 0

We notice that the smallest term here is xr, so we find the coefficients of that and equate it to
0

xr : r(r − 1)a0 = 0⇒ r(r − 1) = 0



This is called the indicial equation, and similar to a characteristic polynomial we solve for the
roots to get r = 0, 1 and these roots are called the exponents at the singularity. Now we can
go ahead and find the coefficients of our general term

xm+r : (r +m)(r +m− 1)am + am−1 = 0⇒ am = − am−1
(r +m)(r +m− 1)

(c) Since the roots differ by an integer multiple we can only solve for the larger one, so

r = 1 : am = − am−1
m(m+ 1)

.

Now if we look at the first few (or equivalently the last few) terms we can figure out what the
pattern will be

a1 = − a0
1 · (1 + 1)

⇒ a2 = − a1
2 · (2 + 1)

=
a0

2 · 1 · (2 + 1) · (1 + 1)
⇒ a3 =

a0
3 · 2 · 1 · (3 + 1)(2 + 1)(1 + 1)

As we continue this we see that

am = (−1)n
a0

m!(m+ 1)!
⇒ y1 = x+

∞∑
n=0

(−1)n
a0

m!(m+ 1)!
xn+1

12) It’s easy to show the two values are singular points, so lets go to the actual part of the problem. I
will solve the problem for x0 = 1. Let t = x− 1⇒ x = t+ 1, then the ODE becomes

−t(t+ 2)y′′ − (t+ 1)y′ + α2y = 0.

For these types of problems its easier to keep the equation as is instead of change it into (8), but
be careful, our lowest term won’t be xr anymore so keep that in mind. Plugging our ansatz and
derivatives into this ODE gives us

∞∑
n=0

−(r + n)(r + n− 1)ant
r+n − 2(r + n)(r + n− 1)ant

r+n−1 − (r + n)ant
r+n = 0

⇒
∞∑
n=0

−(r + n)(r + n− 1)ant
r+n − 2(r + n)(r + n− 1)tr+n−1 − (r + n)ant

r+n − (r + n)ant
r+n−1 + α2ant

r+n = 0.

We observe that the lowest term is tr−1, so we find the coefficients of this term first,

tr−1 : [−2r(r − 1)− r]a0 ⇒ −2r2 + r = r(−2r + 1) = 0⇒ r = 0,
1

2
.

Since these are not integer multiples we can solve for both, but first we need the general term

tr+m : − (r +m)(r +m− 1)am − 2(r +m+ 1)(r +m)am+1 − (r +m)am − (r +m+ 1)am+1 + α2am

= [α2 − (r +m)2]am − (r +m+ 1)(2r + 2m+ 1)am+1 = 0

⇒ am+1 =
α2 − (r +m)2

(r +m− 1)(2r + 2m+ 1)
am

We could solve for the two solutions, but that gets extremely tedious and long, so on the homework
feel free to stop at this point.



6.1 Laplace Transforms

Differential equations are hard! With the characteristic polynomial we were able to convert the problem
into an algebraic equation, but this only works for simple problems. For harder problems there are special
types of transforms called integral transforms.

Definition 3. If f(t) is defined for all t > 0 and if s ∈ R such that the integral

F (S) =

∫ ∞
0

e−stf(t)dt (9)

converges for s < sn <∞, then F (s) is called the Laplace Transform of f(t) and denoted as L{f(t)} = F (s).

Now lets do some examples

2) We did the sketch in class.
10) Here we use the definition of the Laplace Transform

F (s) =

∫ ∞
0

e−steat sinh(bt)dt =

∫ ∞
0

e−steat
1

2
(ebt − e−bt)dt =

1

2

∫ ∞
0

[
e(b+a−s)t − e(−b+a−s)t

]
= lim
τ→∞

1

2

∫ τ

0

[
e(b+a−s)t − e(−b+a−s)t

]
=

1

2
lim
τ→∞

[
1

b+ a− s
e(b+a−s)t − 1

−b+ a− s
e(−b+a−s)t

]τ
0

=
1

2
lim
τ→∞

[
1

b+ a− s
e(b+a−s)τ − 1

−b+ a− s
e(−b+a−s)τ − 1

b+ a− s
− 1

−b+ a− s

]
=

1

2

[
1

s− a− b
− 1

s− a+ b

]
=

b

(s− a)2 − b2
.

However, notice that we can only take the integral if both b+ a− s < 0 and −b+ a− s < 0, which
means we need s− a > |b|.

14) Again we use the definition

F (s) =

∫ ∞
0

e−steat cos bt =

∫ ∞
0

e−steat
1

2
(eibt − e−ibt)dt =

1

2

∫ ∞
0

(
e[(a+ib)−s]t − e[(a−ib)−s]t

)
dt

= lim
τ→∞

1

2

∫ τ

0

(
e[(a+ib)−s]t − e[(a−ib)−s]t

)
dt =

1

2
lim
τ→∞

[
1

(a+ ib)− s
e[(a+ib)−s]t − 1

(a− ib)− s
e[(a−ib)−s]t

]τ
0

=
1

2
lim
τ→∞

[
1

(a+ ib)− s
e[(a+ib)−s]τ − 1

(a− ib)− s
e[(a−ib)−s]τ − 1

(a+ ib)− s
+

1

(a− ib)− s

]
=

1

2

[
1

(a− ib)− s
− 1

(a+ ib)− s

]
=

s− a
(s− a)2 + b2

.

The condition for this is more difficult, but if we ignore the complex part, which we can do because
of certain properties of complex numbers, we get that the integral converges for s > a.

22) This one is much easier than the previous two. Notice that after t = 1 the function is zero, so our
integral becomes

F (s) =

∫ ∞
0

e−stf(t)dt =

∫ 1

0

te−stdt = − 1

s2
e−st(st+ 1)

∣∣∣∣1
0

= − 1

s2
e−s(s+ 1) +

1

s2
.

We have one more small theoretical consideration. This can be derived using Calc II, but unless you were
in my class or Professor Horntrop’s you probably didn’t see it in Calc II.

Theorem 1. If |f(t)| ≤ g(t) for t ≥ M ,
∫∞
M
g(t)dt converges implies

∫∞
a
f(t)dt also converges for t ≥ a,

and if f(t) ≥ g(t) for t ≥M ,
∫∞
M
g(t)dt diverges implies

∫∞
0
f(t)dt diverges for t ≥ a.

Lets do one example with this.

28) We have that | cos t| ≤ 1, so |e−t cos t| ≤ e−t, and
∫∞
0
e−tdt = 1 converges so

∫∞
0
e−t cos tdt also

converges.



6.2 IVPs with Laplace Transforms

I’ll “handwave” this section because deeper knowledge is required to properly understand the theory,
which exceeds the scope of this course.

In order to apply Laplace transforms to ODEs we have to take the Laplace of the derivatives. Let
Y = L{y} and y′ = dy/dt, then

L{y′} =

∫ ∞
0

e−sty′dt = e−sty
∣∣∞
0

+ s

∫ ∞
0

e−stydt = −y(0) + sY. (10)

It should be noted that this integral was done using integration by parts. We can get higher derivatives by
induction

L{y′′} = L{(y′)′} = −y′(0) + sL{y′} = −y′(0)− sy(0) + s2Y. (11)

Lets do a few examples

5) We first recognize what it resembles and try to convert it into that form

2s+ 2

s2 + 2s+ 5
= 2

s+ 1

(s+ 1)2 + 4
⇒ L−1{F (s)} = 2e−t cos 2t.

8) First we do the partial fractions

A

s
+
Bs+ C

s2 + 4
⇒ As2 + 4A+Bs2 + Cs = (A+B)s2 + Cs+ 4A = 8s2 − 4s+ 12.

Then we get A = 3, C = −4, and B = 5, then

F (s) =
3

s
+ 5

s

s2 + 4
− 2

2

s2 + 4
⇒ L{F (s)} = 3 + 5 cos 2t− 2 sin 2t.

14) We take the Laplace transform of the entire ODE

−��
�*1

y′(0)− s���*
1

y(0) + s2Y + 4��
�*1

y(0)− 4sY + 4Y = 0⇒ (s2 − 4s+ 4)Y = s− 3⇒ Y =
s− 3

s2 − 4s+ 4

⇒ Y =
s− 3

(s− 2)2
=
���s− 2

(s− 2)�2
− 1

(s− 2)2
⇒ y(t) = e2t − te2t.

22) Again we take the Laplace transform of the entire ODE

−��
�*1

y′(0)− s���*
0

y(0) + s2Y + 2��
�*0

y(0)− 2sY + 2Y =
1

s+ 1
⇒ (s2 − 2s+ 2)Y =

1

s+ 1
+ 1

⇒ Y =
1

(s+ 1)(s2 − 2s+ 2)
+

1

s2 − 2s+ 2
.

The second term is fine, but for the first time we must do partial fractions, which you’ll have to use
a lot

A

s+ 1
+

Bs+ C

s2 − 2s+ 2
⇒ As2 − 2As+ 2A+Bs2 +Bs+Cs+C = (A+B)s2 + (B +C − 2A)s+ 2A+C = 1.

Then we get A = −B ⇒ C = 3A, then A = 1/5 = −B, and C = 3/5. Hence,

Y =
1

5
· 1

s+ 1
+

1

5
· −s+ 8

s2 − 2s+ 2
=

1

5
· 1

s+ 1
− 1

5
· s− 1

(s− 1)2 + 1
+ 7 · 1

(s− 1)2 + 1

⇒ y =
1

5
[e−t − et cos t+ 7et sin t].


