- (1) Please use the method of undetermined coefficients to find the form of the particular solution (WITHOUT SOLVING FOR CONSTANTS) of the following ODEs.
 - (a)

$$y'' + 5y' + 6y = -t + e^{-3t} + te^{-2t} + e^{-3t}\cos t$$

(b)

$$y'' + 3y' + 2y = e^{t}(t^{2} + 1)\sin(2t) + 3e^{-t}\cos t + 4e^{t}.$$

- (2) Please find the general solution of the ODE: $y'' + 4y' + 4y = t^{-2}e^{-2t}$; t > 0
- (3) Consider the ODE $y'' + 2y' + 2y = \cos t$.
 - (a) Please find the general solution.
 - (b) What happens to the solution as $t \to \infty$?
- (4) Please solve the IVP: $y'' + 4y = 6\sin(4t)$; y(0) = y'(0) = 0.
- (5) Consider the IVP y'' 3y' 4y = t + 2; y(0) = 3, y'(0) = 0.
 - (a) Please find the solution to the IVP.
 - (b) What happens to the solution as $t \to \infty$?
- (6) Consider the ODE $2t^2y'' ty' + y = t\sqrt{t}$.
 - (a) Verify the solutions to the homogeneous ODE are $y_1 = t$ and $y_2 = \sqrt{t}$
 - (b) Use the characteristic solution $y_c = c_1 y_2 + c_2 y_2$ to find the general solution to the full ODE.
- (7) A mass weighing 1/2 lb (i.e. mass = $1/64lb \cdot s^2/ft$) stretches a spring 1/2 ft.
 - (a) Suppose the system has no damping. The mass is initially pulled down 1/2 ft and released.
 - (i) Write down the IVP for this system.
 - (ii) Solve the IVP.
 - (iii) When does the mass return to the equilibrium position (i.e. x = 0).
 - (b) Now suppose the system has a damping constant of $2lb \cdot s/ft$. The mass is initially pushed up 1/2 ft and released with a downward velocity of 1/2 ft/s.
 - (i) Write down the IVP for this system.
 - (ii) Solve the IVP.
- (8) Please solve the following IVP

$$y'' + 4y = 3\sin 2t$$
; $y(0) = 2$, $y'(0) = -1$.

1