- (1) Sketch the direction field for $y' = y(y^2 4)$ and state what happens as $t \to \infty$.
- (2) Sketch the direction field for $y' = y(y-2)^2$.
- (3) Consider the ODE $2t^2y'' + 3ty' y = 0$.
	- (a) What is the order of the equation? Is it linear or nonlinear?
	- (b) Is $y_1 = t^{1/2}$ a solution?
	- (c) Is $y_2 = t^{-1}$ a solution?
	- (d) If they are both solutions find the Wronskian of those solutions.
- (4) What is the order of the ODE $\frac{d}{dx}$ \overline{x} $rac{dy}{dx}$ = $ln x$ xy . Is it linear or nonlinear?
- (5) Solve the IVP $\frac{dy}{dx}$ $\frac{dy}{dx} =$ \overline{x} $y(1+x^2)$ $, y(0) = -2.$
- (6) Solve the IVP $y' = y^2 1$, $y(0) = -2$.
- (7) Solve the IVP $y' + y = e^{-t}$, $y(0) = y_0$. Find the value of y_0 such that the solution $y(t)$ reaches its maximum at $t = 4$.
- (8) Solve the IVP $ty' + 2y = 4t^2$, $y(1) = 4$.
- (9) Find a linear homogeneous constant coefficient ODE that has the roots of its characteristic equation as $r = -2, 3$.
- (10) Solve the IVP $y'' y' 2y = 0$; $y(0) = \alpha$, $y'(0) = \beta$. What relation between α and β will give us a bounded (for all time) solution?
- (11) Consider the IVP: $t(t-4)y'' 3ty' + 4y = 2$; $y(3) = 0$, $y'(3) = -1$. Determine the longest interval for which the IVP is guaranteed to have a unique solution.
- (12) Consider the IVP: $4y'' + 12y' + 9y = 0$; $y(0) = -1$, $y'(0) = \alpha$.
	- (a) For what α does the solution change signs at $t = 1/2$?
	- (b) How many times does this solution (for the α above) change signs for $t > 0$?
- (13) A tank with a capacity of 6 L initially contains 10 g of salt and 1 L of water. A mixture containing 1 g/L of salt enters the tank at a rate of 3 L/hr. The mixture leaves the tank at a rate of $\frac{1}{2}V(t)$ L/hr, where $V(t)$ is the volume of fluid in the tank (which may be less than the volume of the tank itself).
	- (a) Formulate the IVP for the volume of fluid in the tank then solve that IVP.
	- (b) Formulate an ODE for the amount of salt in the tank. Show that this ODE is the same as the ODE for the volume above.
- (14) A tank initially contains 120 L of fresh water. A mixture containing a concentration of $\gamma g/L$ of salt enters the tank at a rate of 2 L/min, and the well-stirred mixture leaves the tank at a rate of 3 L/min. (a) When will the tank be empty (i.e. come up with an IVP for the volume).
	- (b) Formulate and then solve an IVP for the amount of salt in the tank.
- (15) Please use the method of undetermined coefficients to find the form of the particular solution (WITHOUT SOLVING FOR CONSTANTS) of the following ODEs. (a)

$$
y'' + 5y' + 6y = -t + e^{-3t} + te^{-2t} + e^{-3t} \cos t
$$

(b)

$$
y'' + 3y' + 2y = e^{t}(t^{2} + 1)\sin(2t) + 3e^{-t}\cos t + 4e^{t}.
$$

(16) Please find the general solution of the ODE: $y'' + 4y' + 4y = t^{-2}e^{-2t}$; $t > 0$

- (17) Consider the ODE $y'' + 2y' + 2y = \cos t$.
	- (a) Please find the general solution.
	- (b) What happens to the solution as $t \to \infty$?
- (18) Please solve the IVP: $y'' + 4y = 6\sin(4t)$; $y(0) = y'(0) = 0$.
- (19) Consider the IVP $y'' 3y' 4y = t + 2$; $y(0) = 3$, $y'(0) = 0$.
	- (a) Please find the solution to the IVP.
	- (b) What happens to the solution as $t \to \infty$?
- (20) Consider the ODE $2t^2y'' ty' + y = t$ √ t.
	- (a) Verify the solutions to the homogeneous ODE are $y_1 = t$ and $y_2 =$ √ t
	- (b) Use the characteristic solution $y_c = c_1y_2 + c_2y_2$ to find the general solution to the full ODE.
- (21) A mass weighing $1/2$ lb (i.e. mass = $1/64lb \cdot s^2/ft$) stretches a spring $1/2$ ft.
	- (a) Suppose the system has no damping. The mass is initially pulled down 1/2 ft and released.
		- (i) Write down the IVP for this system.
		- (ii) Solve the IVP.
		- (iii) When does the mass return to the equilibrium position (i.e. $x = 0$).
	- (b) Now suppose the system has a damping constant of $2lb \cdot s/ft$. The mass is initially pushed up $1/2$ ft and released with a downward velocity of $1/2$ ft/s.
		- (i) Write down the IVP for this system.
		- (ii) Solve the IVP.
- (22) Please solve the following IVP

$$
y'' + 4y = 3\sin 2t; \ y(0) = 2, \ y'(0) = -1.
$$

(23) Consider the function

$$
g(t) = \begin{cases} e^{-t} & 0 \le t < 1\\ e^{-3t} + 1 & 1 \le t < 2\\ 1 & t \ge 2 \end{cases}
$$

- (a) Graph the function for $0 \le t \le 3$.
- (b) Write $g(t)$ as unit step functions; i.e. the "u" notation.
- (c) Find the Laplace transform of the function.
- (24) Solve the following IVP

$$
y'' + 4y' + 8y = 2u_{\pi}(t) - 2\delta(t - 2\pi); \ y(0) = 2, \ y'(0) = 0
$$

(25) Use a convolution to find the Laplace Transform of (Don't integrate)

$$
F(s) = \frac{1}{s^3(s^2 + 1)}.
$$

(26) Find the Laplace Transform of

$$
f(t) = \int_0^t (t - \tau)^2 \cos(2\tau) d\tau
$$

(27) Find the inverse Laplace Transform (in closed form) of

$$
F(s) = \frac{s^2 - 9}{s^3 + 6s^2 + 9s}.
$$

(28) Find the inverse Laplace Transform (in closed form) of

$$
G(s) = e^{-s} \frac{s-2}{s^2 + 2s + 2}
$$

(29) Find the inverse Laplace Transform of

$$
F(s) = \frac{3}{s^2 + 4}
$$

(30) Find the inverse Laplace Transform of

$$
F(s) = \frac{2s - 3}{s^2 - 4}
$$

(31) Find the inverse Laplace Transform of

$$
F(s) = \frac{1 - 2s}{s^2 + 2s + 10}
$$

(32) Use Laplace Transforms to solve the IVP

$$
y^{(4)} - y = 0
$$
; $y(0) = 1$, $y'(0) = 0$, $y''(0) = -2$, $y'''(0) = 0$.

(33) Use Laplace Transforms to solve the IVP

$$
y'' + 4y' = \begin{cases} t & 0 \le t < 1, \\ 0 & t \ge 1 \end{cases}; y(0) = y'(0) = 0
$$

(34) Use Laplace Transforms to solve the IVP

$$
y' + ay = e^{\lambda t}; \ y(0) = c,
$$

with $a \neq 0$. What happens to the solution when $\lambda + a \neq 0$? What about for $\lambda + a = 0$?