
Math 3350 Rahman Lectures 14 and 15

3.8: Linear Models: Initial-Value Problems

Applications: Without Forcing. Consider a mass on a weightless-hanging spring. Gravity balances with the spring force,
so we can neglect it. All we need are the additional forces on the system. The total force on the entire system is mx′′. The
spring force is kx, and the retarding (or damping) force is γx′. Any external force is neglected in this section, but if it were not
it would just be F (t). Applying Newton’s laws gives,

mx′′ = −kx− γx′ ⇒ mx′′ + γx′ + kx = 0; x(0) = x0, x
′(0) = v0. (1)

We also have to be aware of the units: m = [mass], γ = [mass/time], and k = [mass/time2].
We can separate the possible solutions into a few cases:
Undamped: Here γ = 0, so our equation becomes

mx′′ + kx = 0. (2)

And the solution is

x = A cos

√
k

m
t+B sin

√
k

m
t. (3)

Here ω =
√
k/m is called the natural frequency. Now, lets think of this in the complex plane and try to determine some

important quantities. We can do this by switching to the complex formulation and letting cosωt be the x-axis and sinωt be
the y-axis. Then we can draw a triangle where A is the base and B is the height. Also, let the angle adjacent to the x-axis be
called φ. Then we have that the hypotenuse, R =

√
A2 +B2 is the amplitude of oscillation, and the angle φ = tan−1(B/A) is

the phase. Then A = R cosφ and B = R sinφ. Then using trig identities we get

x = R cosφ cosωt+R sinφ sinωt = R cos(ωt− φ). (4)

Now, notice that x(0) = R cosφ. When does x = R cosφ again in the same manner? We can show this happens at every addition

of 2π/ω, so our period is T = 2π/ω = 2π
√
m/k.

Damped: Now we explore what happens when we have damping. This gives rise to three cases. Here we will have the full
ODE, so our roots of the characteristic polynomial are

r =
1

2m
(−γ ±

√
γ2 − 4mk).

If γ2 − 4mk > 0, our solution becomes x = c1e
r1t + c2e

r2t, and this is called overdamped, because it goes to zero very fast.

If γ2 − 4mk = 0, our solution becomes x = (c1 + c2t)e
rt, where r is a repeated root, and this is called critically damped

because after some critical point it damps to zero very fast.
If γ2 − 4mk < 0, our solution becomes x = eξt(A cos θt + B sin θt). This is a bit of a special case. If ξ = −γ/2m is large,

it acts like the preceding case, if it is small then we get behavior called underdamped motion. This is because the system will
oscillate while damping out. Here θ is called the quasi frequency and θ/ω < 1. Similarly, Td = 2π/θ is called the quasi period
and Td/T > 1. Also, notice that while our phase φ is going to be the same as the undamped case, the amplitude is changing

with time now: R(t) = eξt
√
A2 +B2.

These cases are outlined in the following handy-dandy table:
Type Criterion Solution

Undamped γ = 0 x = A cosωt+B sinωt
Overdamped γ2 − 4mk > 0 x = c1e

r1t + c2e
r2t

Critically Damped γ2 − 4mk = 0 x = (c1 + c2t)e
rt

Underdamped γ2 − 4mk < 0 x = eξt(A cos θt+B sin θt)

The next table outlines the oscillatory behavior:
Type Criterion Solution Frequency Period

Undamped γ = 0 x = A cosωt+B sinωt ω =
√
k/m T = 2π/ω

Underdamped γ2 − 4mk < 0 x = eξt(A cos θt+B sin θt) θ = (
√

4mk − γ2)/2γ Td = 2π/θ
1



Now lets do a couple of problems

Ex: u = −2 cosπt− 3 sinπt.
Solution: We calculate the amplitude in the usual manner, R =

√
4 + 9 =

√
13. And the phase, which they call δ

and we call φ, tan δ = −2/− 3, which means we are in the third quadrant, so δ = tan−1(2/3) +π. Finally, the frequency
is ω = π.

Ex:
Solution: Here we must first calculate the spring constant. Recall Hooke’s law, F = kx ⇒ k = F/x =

(.1)(9.8)/(.05) = 19.6 N/m. Since there is no retarding force, our ODE is

mx′′ + kx = 0; x(0) = 0, x′(0) = 0.1,

which has a general solution of,

x = A cos

√
k

m
t+B sin

√
k

m
t = A cos 14t+B sin 14t.

From the initial conditions we get, A = 0, 14B = 0.1 ⇒ B = 1/140. This part is done incorrectly in the book because
they forgot to be consistent with the units. So our solution is

x =
1

140
sin 14t.

This means that the time of first return is t1 = π/14, and the period is T = π/7.

Another application is the RLC circuit. Earlier in the semester we discussed the RL circuit, whcih had an ODE of LdI/dt+

RI = V . Now, for the RLC circuit, the voltage across the conductor is Q(t)/C = (1/C)
∫ t
t0
I(τ)dτ + VC(t0), then our ODE

becomes

L
dI

dt
+RI +

1

C

∫ t

t0

I(τ)dτ + VC(t0) = V. (5)

However, we don’t want an integro-differential equation, we want an ODE, so we must differentiate the entire equation to get

LI ′′ +RI ′ +
1

C
I = v′(t); I(t0) = I0, I

′(t0) =
1

L
(V (t0)−RI0 −Q0/C). (6)

However, recall I = dQ/dt, so we can plug this into (5) to get

LQ′′ +RQ′ +
1

C
Q = V (t); Q(t0) = Q0, Q

′(t0) = I(t0) = I0. (7)

Notice that the equations are just like spring equations.
Lets do one electrical problem

Ex:
Solution: For this problem we use (7). We discharge the capacitor without incoming voltage and there is no resistor,

so our equation is LQ′′ + Q/C = 0, but since L = 1, it is easier just to plug this in straight away, so Q′′ + Q/C = 0.

Solving for the roots gives r2 + 1/C = 0⇒ r = ±i
√

1/C. Then the general solution is

Q = A cos
√

1/Ct+B sin
√

1/Ct.

Plugging in the initial conditions gives, Q(0) = A = 10−6, and Q′(0) = B
√

1/C = 0⇒ B = 0. So, our solution is

Q(t) = 10−6 cos(2× 103)t.

Now lets do a few more problems for oscillators in general

Ex:
Solution: Notice that for this problem ω =

√
k/m = 1. Now we solve the full ODE, which gives r2 + γr + 1 =

0 ⇒ r = −γ/2± i
√

4− γ2. So, θ =
√

4− γ2/2. Since we want the period to be 50frequencytobe50 1
4 (4− γ2) = 4/9 ⇒

4− γ2 = 16/9⇒ γ = 2
√

5/3.



Ex:
Solution:
Overdamped: The general solution is: x = c1e

r1t+c2e
r2t. Then x = 0⇒ c1e

r1t = −c2er2t ⇒ −c1/c2 = e(r1−r2)t ⇒
ln(−c1/c2) = (r1 − r2)t⇒ t = ln(−c1/c2)/(r2 − r1), therefore x has at most one zero.

Critically Damped: The general solution is x = (c1 + c2t)e
rt. Then x = 0⇒ c1 + c2t = 0⇒ t = −c1/c2.

Ex: Consider the IVP

u′′ +
1

4
u′ + 2u = 0; u(0) = 0, u′(0) = 2.

Find the time T such that it is the first time the oscillation amplitude is equal to or less than half the initial oscillation
amplitude.

Solution: The roots are r2 + (1/4)r + 2 = 0⇒ r = −1/8± i
√
127
8 . Then the general solution is

u = e−t/8

[
A cos

√
127

8
t+B sin

√
127

8
t

]
So u(0) = A = 0 and u′(0) = B

√
127/8 = 2⇒ B = 16/

√
127. This gives us a solution of

u =
16√
127

e−t/8 sin

√
127

8
t.

The oscillation amplitude is given by R(t) = (16/
√

127)e−t/8. Then the initial oscillation amplitude is R(0) = 16/
√

127⇒
e−t/8 = 1. So to get half the amplitude we need e−t/8 = 1/2⇒ t/8 = ln 2⇒ t = 8 ln 2.

Applications: With Forcing. For this section we will call the natural frequency ω0.
There are many different ODEs that are possible, which we would simply solve using undetermined coefficients or variation

of parameters. There are some general definitions we need to know before we can proceed.
Consider the solution

x = u(t) + U(t) (8)

Definition 1. If limt→∞ |u(t)| = 0, u(t) is called the transient solution.

Definition 2. If |U(t)| < ∞ and limt→∞ |U(t)| 6= 0, U(t) is called the steady state solution; i.e. the state the system tends to
as time progresses.

There is also this concept of resonance, which basically means uncontrolled vibrations due to forcing. In an undamped system
if F (t) contains sinω0t or equivalently cosω0t, you will get a repeat, so sine and cosine terms in your yp will be multiplied by t
and your solution will blow up. This is resonance in an undamped system. A similar thing can happen in a damped system if
the damping is small enough and the forcing frequency is very close to the natural frequency.

If there is no resonance in the system, we will have two types of oscillations in a single solution. The solution will be
y = const. (cosωt− cosω0t) = const.

(
2 sin ω0−ω

2 t sin ω0−ω
2 t

)
where 1

2 (ω0 + ω) is the high frequency oscillation and 1
2 (ω0 − ω) is

the low frequency oscillation. So there is a long time oscillation and a short time oscillation and this phenomenon is called beat.
Important identities:

cos(a± b) = cos a cos b∓ sin a sin b (9)

sin(a± b) = sin a cos b± cos a sin b (10)

Since there isn’t enough time in the semester to delve deep into these particular concepts :(, it’ll be easier to explain them
with examples.

Ex: sin(7t)− sin(6t)
Solution: ω0 = 7 and ω = 6, then a = 1

2 (ω0 + ω)t and b = 1
2 (ω0 − ω)t. Then we use the sine identity to get

sin(7t) = sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)

sin(6t) = sin(a− b) = sin(a) cos(b)− cos(a) sin(b)

⇒ sin 7t− sin 6t = 2 cos(a) sin(b) = 2 cos

(
ω0 + ω

2
t

)
sin

(
ω0 − ω

2
t

)
= 2 cos

13

2
t sin

t

2
.



Ex:
Solution: m = 5, x = 0.1, and F = kx⇒ x = 5·10

0.1 = 500 and γ = 2
0.04 = 200

4 = 50. Then our IVP is

5x′′ + 50x′ + 500x = 10 sin
t

2
; x(0) = 0, x′(0) = 0.03.

Ex:
Solution: m = 3/16, γ = 0, k = 12, so the IVP is

3

16
x′′ + 12x = 4 cos 7t; x(0) = x′(0) = 0.

The characteristic solution will be xc = A1 cos 8t + A2 sin 8t. Our guess for the particular solution is yp = B1 cos 7t +
B2 sin 7t, and since there are no repeats this is it. Plugging into the ODE gives us

− 3

16
· 49B1 cos 7t− 3

16
· 49B2 sin 7t+ 12B1 cos 7t+ 12B2 sin 7t =

45

16
B1 cos 7t+

45

16
B2 sin 7t

= 4 cos 7t⇒ B2 = 0, B1 =
64

45
⇒ xp =

64

45
cos 7t⇒ x = A1 cos 8t+A2 sin 8t+

64

45
cos 7t.

From the initial conditions x(0) = A1 + 64/45 = 0⇒ A1 = −45/64 and x′(0) = 8A2 = 0. Then our full solution is

x =
64

45
[cos 7t− cos 8t] =

128

45
sin

t

2
sin

15t

2
.

Ex:
Solution: m = 2, γ = 1, k = 3, so the ODE is

2x′′ + x′ + 3x = 3 cos 3t− 2 sin 3t.

For the characteristic solution, r = 1
4 (−1±

√
1− 24) = −1/4±i

√
23/4, which gives us xc = e−t/4

[
A1 cos

√
23
4 t+A2 sin

√
23
4 t
]
.

Our guess for the particular solution is xp = B1 cos 3t+B2 sin 3t, and since there are no repeats, this is it. Plugging into
the ODE gives us

− 18B1 cos 3t− 18B2 sin 3t− 3B1 sin 3t+ 3B2 cos 3t+ 3B1 cos 3t+ 3B2 sin 3t

= (3B2 − 15B1) cos 3t− (3B1 + 15B2) sin 3t = 3 cos 3t− 2 sin 3t.

This gives us two equations with two unknowns: 3B2 − 15B1 = 3 and 3B1 + 15B2 = 2, then B1 = −1/6 and B2 = 1/6.
So we get

xp = −1

6
cos 3t+

1

6
sin 3t⇒ x = e−t/4

[
A1 cos

√
23

4
t+A2 sin

√
23

4
t

]
+

1

6
[sin 3t− cos 3t] .

Notice the terms with the exponent die off as t goes to infinity, however, the other terms remain, so the steady state
solution is

x∞ =
1

6
[sin 3t− cos 3t] =

√
2

6
cos

(
3t− 3π

4

)



Ex:
Solution:

(a) The characteristic solution is easily found to be uc = A1 cos t + A2 sin t. Our guess for the particular solution is
up = B1 cosωt+B2 sinωt, and since ω 6= 1, there are no repeats. Plugging into the ODE gives us

− ω2B1 cosωt− ω2B2 sinωt+B1 cosωt+B2 sinωt = (1− ω2)B1 cosωt+ (1− ω2)B2 sinωt

= 3 cosωt⇒ B2 = 0, B1 =
3

1− ω2
⇒ up =

3

1− ω2
cosωt⇒ u = A1 cos t+A2 sin t+

3

1− ω2
cosωt.

The initial conditions gives us u(0) = A1 + 3
1−ω2 = 0⇒ A1 = −3/(1− ω2) and u′(0) = A2 = 0. Then our solution

is

u =
3

1− ω2
[cosωt− cos t] =

6

1− ω2
sin

1− ω
2

t sin
1 + ω

2
t.

If we did have ω = 1 in the beginning, then notice that there would be a repeat and our solution would have a
multiple of t, which would blow up.

(b) As ω → 1, the amplitude increases: |umax| → ∞.


