
Math 3350 Rahman Lecture 3

2.3 - 2.4 Linear Equations and Method of Integrating Factors

Consider the ODE dy
dx −

y
x + f(x)

x = 0. This is clearly not separable.

Now consider the ODE t2 dx
dt + 2xt = t. This too is not separable, but we can make it separable by employing a small trick.

Notice that t2 dx
dt + 2xt = d

dt (xt
2), so the ODE becomes, d

dt (xt
2) = t, which is separable. This is what is referred to as an “exact

ODE”. So we get,

d

dt
(xt2) = t⇒ d(xt2) = tdt⇒

∫
d(xt2) =

∫
tdt⇒ xt2 =

1

2
t2 + C ⇒ x =

1

2
+ Ct−2.

This is the idea. If we encounter an equation that isn’t separable we need to change it in some way that makes it separable.
Lets look at the first equation again and write it in differential form, i.e.

dy

dx
− y

x
+
f(x)

x
= 0⇒ xdy − ydx+ f(x)dx = 0.

Notice, that xdy − ydx is almost quotient rule, we just need to finish the denominator, which we notice should be x2, so let’s
multiply through by 1/x2,

xdy − ydx
x2

+
f(x)

x2
dx = 0⇒ d

(y
x

)
= −f(x)

x2
dx⇒

∫
d
(y
x

)
= −

∫
f(x)

x2
dx

⇒ y

x
= −

∫
f(x)

x2
dx⇒ y = −x

∫
f(x)

x2
dx.

This is called the method of “integrating factors”, where 1/x2 is called the “integrating factor”, which are delineated in the
following definition.

Definition 1. Consider an ODE of the form

dy

dx
+ p(x)y = g(x). (1)

We call µ(x) an integrating factor if

µ(x)

[
dy

dx
+ p(x)y = g(x)

]
is an exact ODE, i.e.

µ(x)

[
dy

dx
+ p(x)y = g(x)

]
⇔ d(µ(x)y) = µ(x)g(x)dx. (2)

All we need to do now is figure out what µ(x) is in general, but fortunately Leibniz already did that for us,

µ(x) = exp

(∫ x

p(ξ)dξ

)
. (3)

In the following examples we use the method of integrating factors to solve our ODE,

Ex: y′ − 2y = 3et

Solution: The integrating factor is µ = exp
(∫ t−2ds

)
= e−2t. Now, we use our method to get,

e−2ty = 3

∫
e−tdt = −3

∫
e−tdt = −3e−t + C ⇒ y = −3et + Ce2t.

Now, notice if C > 0, y →∞ as t→∞, and if C ≤ 0, y → −∞ as t→∞.

Ex: ty′ − y = t2e−t; t > 0

Solution: The integrating factor is µ = exp
(∫ t−1/sds

)
= 1/t, then

y

t
=

∫
e−tdt = −e−t + C ⇒ y = te−t + Ct.

Now, notice if C = 0, y → 0 as t→∞, and if C 6= 0, y →∞ as t→∞.
1



Ex: y′ − 1

2
y = 2 cos t; y(0) = a

Solution: The integrating factor is µ = exp
(∫ t−(1/2)ds

)
= e−t/2. Then,

e−t/2y = 2

∫
e−t/2 cos tdt =

4

5
e−t/2(2 sin t− cos t) + C.

We did the integration in class. Know how to do the integration! Then, we get

y =
4

5
(2 sin t− cos t) + Cet/2.

From the initial condition we get C = a+ 4/5. We see that the behavior of the system changes at C = 0, so a0 = −4/5.
Now, when a = −4/5, y is oscillatory as t → 0, specifically y → 4

5 (2 sin t − cos t). Furthermore, if a < −4/5, y → −∞,
and if a > −4/5, y →∞.

30)

Solution: The integrating factor is µ = exp
(
−
∫ t
ds
)

= e−t. Then we get

e−ty =

∫ (
e−t + 3e−t sin t

)
dt = −e−t + 3

∫
e−t sin tdt.

We employ integration by parts for
∫
e−t sin tdt with u = e−t ⇒ du = −e−tdt and dv = sin tdt⇒ v = − cos t,∫
e−t sin tdt = −e−t cos t+

∫
e−t cos tdt

We employ by parts again with u = e−t ⇒ du = −e−tdt and dv = cos tdt⇒ v = sin t,∫
e−t sin tdt = −e−t cos t+ e−t sin t−

∫
e−t sin tdt⇒

∫
e−t sin tdt = −1

2
e−t cos t+

1

2
e−t sin t.

Plugging this back into our ODE gives,

e−ty = −e−t − 3

2
e−t cos t+

3

2
e−t sin t+ C ⇒ y = −1− 3

2
cos t+

3

2
sin t+ Cet.

The initial condition gives us y0 = −1− 3/2 + C = −5/2 + C, then our solution is

⇒ y = −1− 3

2
cos t+

3

2
sin t+ (y0 + 5/2)et. (4)

Then for y > −5/2, y → ∞ as t → ∞. For y < −5/2, y → −∞ as t → ∞. However, for y0 = −5/2, y oscillates, but
remains finite.


