
Math 3350 Rahman Lecture 6

3.1 Theory of linear equations

Last time we discussed ODEs of the form,

pn(x)y(n)(x) + pn−1y
(n−1)(x) + · · ·+ p2(x)y′′(x) + p1(x)y′(x) + p0(x)y(x) = 0.

Now lets look at the general case of,

pn(x)y(n)(x) + pn−1y
(n−1)(x) + · · ·+ p2(x)y′′(x) + p1(x)y′(x) + p0(x)y(x) = g(x).

Lets put this in standard form by dividing through by pn(x) and naming the new functions “q” and “f”,

y(n)(x) + qn−1(x)y(n−1)(x) + · · ·+ q2(x)y′′(x) + q1(x)y′(x) + q0(x)y(x) = f(x). (1)

Consider the simple ODE,

y′ + q(x)y = f(x); q(x) =

{
1 if x is irrational,

0 if x is rational;

In order to solve this we would need to use integrating factors, however notice that q is not integrable (in the usual fashion),
so we can’t solve this - in fact it has no unique solution. So, we need conditions on q′s and f to guarantee that we can find
a unique solution. We outline this in the next theorem, however one should proceed with caution because this only works for
linear ODEs.

Theorem 1. Consider ODE (1) with initial conditions: y(x0) = a0, y
′(x0) = a1, . . . , y

(n−1)(x0) = an−1.
Then, if qn−1, qn−2, . . . , q2, q1, q0 are continuous on a common interval I containing x0, the IVP has exactly one solution on

I.

Now we proceed to defining certain important ideas that we will use in our following theorems.

Definition 1. The set of functions {h1, h2, . . . , hn−1, hn} are said to be linearly independent if c1h1 + c2h2 + · · ·+ cn−1hn−1 +
cnhn 6= 0, otherwise it is said to be linearly dependent.

Definition 2. The expression c1h1 + c2h2 + · · ·+ cn−1hn−1 + cnhn is said to be a linear combination of h1, h2, . . . , hn−1, hn.

Last time we talked about superposition. We will pose it more rigorously in the next theorem. First consider the homogeneous
ODE in standard form,

y(n)(x) + qn−1(x)y(n−1)(x) + · · ·+ q2(x)y′′(x) + q1(x)y′(x) + q0(x)y(x) = 0. (2)

Theorem 2. If y1, y2, . . . , yn−1, yn are solutions to (2), then any linear combination of y’s are also solutions.

For example, y = c1y1 + c2y2, y = c1y1 + c2y2 + · · ·+ cnyn, etc. are also solutions.
Now we define what the Wronskian is, which will be a major part of this section.

Definition 3. Suppose h1(x), h2(x), . . . , hn−1, hn are functions with n− 1 derivatives, then the Wronskian is defined to be the
following determinant,

W =
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(3)

Theorem 3. Suppose y1, y2, . . . , yn−1, yn are solutions to (2) on I, with the usual initial conditions, then W 6= 0 guarantees
they are linearly independent on ∈ I.

So the rewording of the above theorem implies that if the Wronskian is zero at a single point then the function may still be
linearly independent.

The next definition and theorem will allow us to find guaranteed linearly independent solutions, but note that these are not
necessarily the only linearly independent solutions.

Definition 4. The set of all linearly independent solutions of an ODE is called the fundamental set of that ODE.

For the remaining theorems consider the second order ODE,

y′′ + q1(x)y′ + q0(x)y = 0. (4)

Theorem 4. Consider ODE (4), and let y1, y2 solve (4) for x ∈ I such that y1(x0) = 1, y′1(x0) = 0 and y2(x0) = 0, y′2(x0) = 1.
Then, y1, y2 form a fundamental set of (4).

The following theorem is a theorem we use in section 3.3.
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Theorem 5. If y = u(t) + iv(t) solves (4) on I, then so does u and v independently, i.e. if y = c1u + ic2v is a solution, so is
y = c3u+ c4v.

The next theorem gives us a formula to compute the Wronskian without having to take a determinant, but it only works for
second order ODEs.

Theorem 6 (Abel). The Wronskian of y1, y2 for (4) can be written as,

W (y1, y2) = c exp

(
−
∫
q1(x)dx

)
, (5)

and is zero (if c = 0) or nonzero (if c 6= 0) for all x ∈ I.

Now lets do some example problems,

Ex: Find the Wronskian of e2t and e−3t/2.
Solution: The derivatives are 2e2t and (−3/2)e−3t/2, so our Wronskian is,

W =

∣∣∣∣ e2t e−3t/2

2e2t − 3
2e
−3t/2

∣∣∣∣ = −3

2
e2t−3t/2 − 2e2t−3t/2.

Ex: Find the Wronskian of e−2t and te−2t

Solution: The derivatives are −2e−2t and e−2t − 2te−2t, so our Wronskian is,

W =

∣∣∣∣ e−2t te−2t

−2e−2t e−2t − 2te−2t

∣∣∣∣ = e−4t − 2te−4t + 2te−4t = e−4t.

Ex: Find the longest interval for guaranteed existence and uniqueness of t(t− 4)y′′ + 3ty′ + 4y = 2; y(3) = 0, y′(3) = −1.
Solution: We put the ODE in standard form,

y′′ +
3

t− 4
y′ +

4

t(t− 4)
y =

2

t(t− 4)
.

Notice, that this has discontinuities at t = 0, 4, and since we need to include the initial condition, the largest domain
where a unique solution exists is t ∈ (0, 4).

Ex: Find the longest interval for guaranteed existence and uniqueness of (x− 3)y′′ + xy′ + (ln |x|)y = 0; y(1) = 0, y′(1) = 1.
Solution: Again we convert the ODE into standard form,

y′′ +
x

x− 3
y′ +

ln |x|
x− 3

y = 0

This is discontinuous when x = 0, 3, so our largest domain where a unique solution containing the initial condition exists
is x ∈ (0, 3).

Ex: If the Wronskian of f and g is 3e4t and f(t) = e2t, what is g(t)?
Solution: Here we have an inverse problem. We need to find a g that satisfies the Wronskian given, so lets take the

Wronskian and see what we get,

W =

∣∣∣∣ e2t g
2e2t g′

∣∣∣∣ = e2tg′ − 2e2tg = e2t(g′ − 2g) = 3e4t ⇒ g′ − 2g = 3e2t

So we have to solve this first order ODE via integrating factor,

µ = exp

(
−
∫ t

2dτ

)
⇒
∫
d(e−2tg) =

∫
3dt⇒ e−2tg = 3t+ C ⇒ g = 3te2t + Ce2t.

Ex: Find the fundamental set of solutions of y′′ + 4y′ + 3y = 0; t0 = 1 using the theorem in this section.
Solution: We go straight to the characteristic polynomial, r2+4r+3 = (r+1)(r+3) = 0⇒ r = −1,−3, so our general

solution is y = c1e
−x + c2e

−3x. Now, by Theorem 4, we solve two different IVPs for this ODE: y1(1) = c1e
−1 + c2e

−3 = 1
and y′1(1) = −c1e−1 − 3c2e

−3 = 0. By summing the two equations we get −2c2e
−3 = 1 ⇒ c2 = −e3/2, this gives

c1 = 3e/2, so our first solution is y1 = 3
2e

(1−x)− 1
2e

3(1−x). For the second solution we have y2(1) = c1e
−1 +c2e

−3 = 0 and

y′2(1) = −c1e−1−3c2e
−3. We easily get c2 = −e3/2 and then c1 = e/2, which gives us a solution of y2 = 1

2e
(1−x)− 1

2e
3(1−x).

So, the following equations make a fundamental set of the ODE,

y1 =
3

2
e(1−x) − 1

2
e3(1−x); y2 =

1

2
e(1−x) − 1

2
e3(1−x).



Ex: Does y1 = x and y2 = sinx constitute a fundamental set of solutions to (1− x cotx)y′′ − xy′ + y = 0; 0 < x < π?
Solution: For the first solution we have y′1 = 1 ⇒ y′′1 = 0 ⇒ −xy′1 + y′1 = 0. For the second solution we have

y′2 = cosx⇒ y′′2 = − sinx, then (1− x cotx)(− sinx)− x cosx+ sinx = − sinx+ x cosx− x cosx+ sinx = 0. Now, we
take the Wronskian of these,

W =

∣∣∣∣ x sinx
1 cosx

∣∣∣∣ = x cosx− sinx 6= 0 for x ∈ (0, π).

So, they are linearly independent on that domain.

Ex: If W is the Wronskian of f and g, and if u = 2f − g and v = f + 2g, what is the Wronskian of u and v?
Recall the Wronskians in 2D is W (f, g) = fg′ − f ′g and W (u, v) = uv′ − u′v. Then

W (u, v) = (2f − g)(f ′ + 2g′)− (2f ′ − g′)(f + 2g) = 2ff ′ + 4fg′ − gf ′ − 2gg′ − 2f ′f − 4f ′g + g′f + 2g′g

= 4[fg′ − f ′g] + [fg′ − f ′g] = 5W (f, g).


