
Math 3350 Rahman Lecture 9 and 12

3.4 Undetermined Coefficients

Consider the nonhomogeneous ODE

any
(n) + an−1y

(n−1) + · · · a2y′′ + a1y
′ + a0 = f(x). (1)

Notice that our usual solution won’t work, but maybe it’s part fo the solution. Suppose yp is a solution to (1) that is linearly
independent with respect to the solution the homogeneous ODE. Let y be the general solution of (1). Lets plug in yc = y − yp
in (1), then we get that yc is a solution to

any
(n) + an−1y

(n−1) + · · · a2y′′ + a1y
′ + a0 = 0. (2)

So, in fact yc is the solution to the homogeneous ODE, so y = yc + yp, where yc is the homogeneous part of the solution and yp
is the purely nonhomogeneous part of the solution.

Definition 1. The characteristic solution, yc, is the general solution of (2) and the particular solution, yp, is the additional
solution to (1).

Case1: No term in f(x) is the same as any term in yc. Then yp is a linear combination of terms of f(x) and their derivatives.

• f1(x) = xn ⇒ y1p = Anx
n +An−1x

n−1 + · · ·+A1x+A0. If our f is a polynomial, the particular solution will be of the
form of the most general polynomial of order of the polynomial in f .
• f2(x) = emx ⇒ y2p = kemx. This one is easy.
• f3(x) = cos(mx) or sin(mx), then y3p = A cos(mx) +B sin(mx). If we have sine or cosine our particular solution will be

a linear combination of sines and cosines.
• f(x) = f1(x) + f2(x) + f3(x) ⇒ yp = y1p + y2p + y3p . If we have a combination of these simple examples then we just

combine all of their respective particular solutions.
• f(x) = f1(x)f2(x)f3(x)⇒ yp = y1py2py3p . We do the same sort of thing with products.

Case 2: f(x) contains terms that are xn times terms in yc, i.e. if u(x) is a term of yc and f(x) contains xnu(x). Then yp is
as usual but multiply by “x”.

• Consider yc = g(x) + emx and f(x) = l(x) + xnemx, where we don’t care about g(x) and l(x) – we are just thinking of
them as place holders. Then our particular solution is yp = h(x) + (Anx

n+1 +An−1x
n + · · ·+A0x)emx.

• Consider a similar case except with sine, also equivalently cosine. yc = g(x) + sin(mx) and f(x) = l(x)xn sin(mx), then
our particular solution is, yp = h(x) + (Anx

n+1 +An−1x
n + · · ·+A0x)(B cos(mx) + C sin(mx)).

Case 3: If yc contains repeated roots with the highest being of order λ (i.e. xλ) and f(x) contains terms xn times the
repeated root terms, then multiply out by xλ+1.

• yc = g(x)+xλ+ · · ·+emx and f(x) = l(x)+xnemx, then our particular solution is yp = h(x)+xλ+1(Anx
n+An−1x

n−1 +
· · ·+A1x+A0)emx.

The idea for the repeated cases is to get rid of all the repeats while preserving the same amount of constants. The cases that
are outlined above are very general, so I made a table of the type of expressions we would most likely come across

Case Characteristic Solution Repeat Form of Particular Solution

Case 2
yc = c1e

r1x + c2e
r2x xner1x yp = x(Anx

n + · · ·+Ax +A0)er1x

yc =ξx (A cos(θx) +B sin(θx)) xneξx cos(θx) yp = x(Anx
n + · · ·+Ax +A0)eξx cos(θx)

Case 3 yc = (c1 + c2x)eλx xneλx yp = x2(Anx
n + · · ·+Ax +A0)eλx

1



It can be tricky to figure out what yp has to be in the beginning, but hopefully some practice problems will help us.

Ex: y′′ + 2y′ = 3 + 4 sin 2t.
Solution: r2 + 2r = r(r+ 2) = 0⇒ r = 0,−2, so yc = c1 + c2e

−2t. Since f(t) = 3 + 4 sin 2t, our initial guess for the
particular solution is yp = A + B cos 2t + C sin 2t, but this would be incorrect because we already have a lone constant
in our characteristic solution, so our actual particular solution is yp = At + B cos 2t + C sin 2t. Plugging this into the
ODE gives,

4(C −B) cos 2t− 4(B + C) sin 2t+ 2A = 3 + 4 sin 2t.

Matching the terms gives 2A = 3⇒ A = 3/2 immediately. From the cosine term we get 4(C−B) = 0⇒ C = B because
there is no cosine term on the right hand side. From the sine terms we have −4(B +C) = 8B = 4⇒ C = B = −1/2, so
our particular solution is yp = 3

2 t−
1
2 cos 2t− 1

2 sin 2t. Then our general solution is

y = c1 + c2e
−2t +

3

2
t− 1

2
cos 2t− 1

2
sin 2t.

Ex: y′′ + 9y = t2e3t + 6.
Solution: r2 + 9 = 0⇒ r = ±3i, then yc = A cos 3t+B sin 3t. Since f(t) = t2e3t + 6, yp = (At2 +Bt+ C)e3t, and

there are no repeats. Plugging this into the ODE gives

2Ae3t + 6(2At+B)e3t + 18(At2 +Bt+ C)e3t + 9D = t2e3t + 6

⇒ 18At2e3t + (12A+ 18B)te3t + (2A+ 6B + 18C)e3t + 9D = t2e3t + 6.

Matching terms immediately gives us 9D = 6⇒ D = 2/3. From the t2e3t we get 18A = 1⇒ A = 1/18. The other terms
are zero so we get, 12/18 + 18B = 0⇒ B = −1/27, and 1/9 + 2/9 + 18C = 0⇒ C = 1/162. So, our particular solution
is yp = (t2/18− t/27 + 1/162)e3t + 2/3. Then our general solution is

y = A cos 3t+B sin 3t+

(
1

18
t2 − 1

27
t2 +

1

162

)
e3t +

2

3
.

Ex: y′′ − 2y′ − 3y = 3te2t; y(0) = 1, y′(0) = 0.
Solution: r2 − 2r − 3 = (r − 3)(r + 1) = 0⇒ r = 3,−1⇒ yc = c1e

3t + c2e
−t. Since f(t) = 3te2t, yp = (At+B)e2t

and there are no repeats. Plugging this into the ODE gives

4Ae2t + 4(At+B)e2t − 2Ae2t − 4(At+B)e2t − 3(At+B)e2t = −3Ate2t + (2A− 3B)e2t = 3te2t.

Matching the te2t gives −3A = 3 ⇒ A = −1. The other term is zero, so we get −2− 3B = 0 ⇒ B = −2/3. This gives
us yp = (−t− 2/3)e2t, then our general solution is

y = c1e
3t + c2e

−t +

(
−t− 2

3

)
e2t.

The first initial condition gives y(0) = c1 +c2−2/3 = 1⇒ c1 +c2 = 5/3, and he second gives y′(0) = 3c1−c2−1−4/3 =
0⇒ 3c1 − c2 = 7/3. Now we add the equations to get 4c1 = 4⇒ c1 = 1⇒ c2 = 2/3. Then our solution is

y = e3t +
2

3
e−t +

(
−t− 2

3

)
e2t.

Ex: y′′ + 2y′ + 2y = 3e−t + 2e−t cos t+ 4e−tt2 sin t.
Solution: For this problem we only need the form of the particular solution. In order to get that we still have to

compute the characteristic solution: r2 + 2r + 2 = 0 ⇒ r = −1 ± i, which gives yc = e−t(c1 sin t + c2 cos t). From f(x)
we can guess a particular solution of

yp
?
= e−t[A+B cos t+ C sin t+ (D2t

2 +D1t+D0) cos t+ (E2t
2 + E1t+ E0) sin t]

?
= e−t[A+ (B2t

2 +B1t+B0) cos t+ (C2t
2 + C1t+ C0) sin t]

However, this would be wrong due to the repeats. So, we need to multiply the cosine and sine block out by t

yp = e−t[A+ t(B2t
2 +B1t+B0) cos t+ t(C2t

2 + C1t+ C0) sin t]


