
Math 3310 Rahman Chapter 14

14.1 Limits of sequences

Definition 1. A sequence {xn} ⊆ R converges if there is an x ∈ R such that
For every ε > 0, there is an N such that |x− xn| ≤ ε for all n ≥ N;
otherwise it diverges. We call this x the limit of {xn}.

Notation: limn→∞ xn = x, xn → x as n→∞, or just xn → x.

Theorem 1 (Triangle Inequality). For x, y ∈ R, |x+ y| ≤ |x|+ |y|.

Proof. Since −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|, −(|x|+ |y|) ≤ x+ y ≤ |x| = |y|, then |x+ y| ≤ |x|+ |y|. �

Theorem 2 (Uniqueness). A sequence {xn} ⊆ R has at most one limit.

Proof. Assume xn → p and xn → q. By the triangle inequality, |p−q| ≤ |p−xn|+ |q−xn|. Since |p−xn| → 0
and |q − xn| → 0, |p− q| → 0⇒ p = q. �

Now lets do a few exercise problems from the book.

14.3) Scratch work: First lets do some scratch work. We want to show∣∣∣∣ 1

2n
− 0

∣∣∣∣ ≤ ε,
then if 1/2n ≤ ε, n ≥ 1/2ε. Now we can do the proof.

Proof. For every ε > 0, choose N(ε) = 1/2ε, then for all n ≥ N ,∣∣∣∣ 1

2n
− 0

∣∣∣∣ ≤ ε (1)

�

14.5) Scratch work: Again we will do some scratch work. We want to show∣∣∣∣ (1 +
1

2n

)
− 1

∣∣∣∣ =

∣∣∣∣ 1

2n

∣∣∣∣ ≤ ε,
then since n > 0, 1/2n ≤ ε. Cross multiplying and taking the log of both sides gives us

2n ≥ 1

ε
⇒ n ln 2 ≥ ln

(
1

ε

)
⇒ n ≥ ln(1/ε)

ln 2
.

Now we can write the proof

Proof. For every ε > 0, choose N(ε) = ln(1/ε)
ln 2 , then for all n ≥ N ,∣∣∣∣ (1 +

1

2n

)
− 1

∣∣∣∣ =

∣∣∣∣ 1

2n

∣∣∣∣ ≤ ε (2)

�

Now lets do a few example problems for finding the limit of sequences

Ex: Prove that
1

n
− 1

n+ 1
→ 0 (3)

Solution: First lets do some back of the envelope calculations. We want to show∣∣∣∣ 1

n
− 1

n+ 1

∣∣∣∣ < ε,

so lets first see if we can bound our sequence by something easier to deal with∣∣∣∣ 1

n
− 1

n+ 1

∣∣∣∣ =

∣∣∣∣ 1

n(n+ 1)

∣∣∣∣ < ∣∣∣∣ 1

n2

∣∣∣∣ ≤ ∣∣∣∣ 1

n

∣∣∣∣.
Now we can do the proof

1



Proof. For every ε > 0, choose N(ε) = 1/ε, then for all n ≥ 1/ε,

∣∣∣∣ 1

n
− 1

n+ 1

∣∣∣∣ < 1

n
≤ ε (4)

�

Ex: Prove that

(2n)1/n → 1. (5)

Solution: Again we do some back of the envelope calculations. Notice that

(2n)1/n = eln(2n)/n

so ∣∣∣∣ ln(2n)

n

∣∣∣∣ < ε1 ⇒
∣∣∣∣eln(2n)/n − 1

∣∣∣∣ < ε

if ε1 = ln(ε+ 1). Furthermore,

∣∣∣∣ ln(2n)

n

∣∣∣∣ < 1

ln(n)
for n > 1.

and 1/ ln(n) < ε1 for n > e1/ε1 . So, lets choose

N(ε) = e1/ ln(ε+1).

Proof. For every ε > 0, choose N(ε) = e1/ ln(ε+1), then for all n ≥ e1/ ln(ε+1),

∣∣∣∣ ln(2n)

n

∣∣∣∣ < 1

ln(n)
≤ ln(ε+ 1)⇒

∣∣∣∣(2n)1/n − 1

∣∣∣∣ =

∣∣∣∣eln(2n)/n − 1

∣∣∣∣ < ∣∣∣∣eln(ε+1) − 1

∣∣∣∣ = ε.

�

Ex: Prove that rn → 0 if |r| < 1.
Solution: Notice that |r|n = exp(n ln |r|), so if n ln |r| = ln(ε), then n = ln(ε)/ ln |r|. Clearly

this n doesn’t work, but it gives us a starting point.

Proof. For every ε > 0, choose N(ε) > ln ε− ln |r|, then for all n ≥ N ,

|rn| =
∣∣ exp(n ln |r|)

∣∣ < ∣∣∣∣ exp

(
ln ε

ln |r|
ln |r|

) ∣∣∣∣ = ε
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14.3 Limits of functions

Definition 2. A function f : A→ R has a limit L near a ∈ A if
for all ε > 0, there exists a δ > 0 such that for all x ∈ A, 0 < |x− a| < δ ⇒ |f(x)− L| < ε.

This is illustrated in the figure below.

Now lets look at some exercise problems from the book.

14.18) Scratch work: We have that |x− 2| < δ and we want |(3x/2 + 1)− 4| < ε. We write∣∣∣∣32x+ 1− 4

∣∣∣∣ =

∣∣∣∣32x− 3

∣∣∣∣ =
3

2
|x− 2| < 3

2
δ.

Now we can write the proof.



Proof. Choose δ = 2ε/3, then for all ε > 0, we have

|x− 2| < δ ⇒
∣∣∣∣32x+ 1− 4

∣∣∣∣ =

∣∣∣∣32x− 3

∣∣∣∣ =
3

2
|x− 2| < 3

2
δ = ε. (6)

�

14.20) Scratch work: We have that |x− 2| < δ and we want |(2x2 − x− 5)− 1| < ε. We write

|2x2 − x− 6| = |2x+ 3||x− 2| < |2x+ 3|δ
Notice that our coefficient here is not constant, so we must bound it. If δ = 1 we would have that
|2x+ 3| < 5, then |2x2 − x− 6| < |2x+ 3|δ < 5δ = ε. Now we can write our proof

Proof. Choose δ = min
(
1, ε5

)
, then for all ε > 0, we have

|x− 2| < δ ⇒ |2x2 − x− 6| = |2x+ 3||x− 2| < ε. (7)

�

14.22) Scratch work: We have that |x− 1| < δ and we want |1/(5x− 4)− 1| < ε. We write∣∣∣∣ 1

5x− 4
− 1

∣∣∣∣ =

∣∣∣∣1− (5x− 4)

5x− 4

∣∣∣∣ =

∣∣∣∣5− 5x

5x− 4

∣∣∣∣ =

∣∣∣∣ 5

5x− 4

∣∣∣∣|x− 1| <
∣∣∣∣ 5

5x− 4

∣∣∣∣δ
This is a bit tricky because we need to avoid the point x = 4/5, but it gets even worse because not
only do we have to avoid it, we also have to be bounded away from it. So we cannot pick δ = 1/5,
we must go with something smaller, say δ = 1/10.

If δ = 1/10, then ∣∣∣∣ 5

5x− 4

∣∣∣∣ ≤ 10⇒
∣∣∣∣ 5

5x− 4

∣∣∣∣δ ≤ 10δ = ε.

Now we may write our proof.

Proof. Choose δ = min(1/10, ε/10), then for all ε > 0, we have

|x− 1| < δ ⇒
∣∣∣∣ 1

5x− 4
− 1

∣∣∣∣ =

∣∣∣∣ 5

5x− 4

∣∣∣∣|x− 1| < ε

�

Now lets look at a few easy examples.

Ex: If f(x) = x, prove that limx→1 f(x) = 1.

Proof. Choose δ = ε, then for all ε > 0 we have

|x− 1| < δ ⇒ |f(x)− 1| = |x− 1| < δ = ε.

�

Ex: If f(x) = x2, prove that limx→2 f(x) = 4.
Scratch Work: We have that |x − 2| < δ and we want |x2 − 4| < ε. Notice that if |x − 2| < 1,

then we can bound |x+2| < 5 because the supremum of x can be in that neighborhood is 3. Then we
have that |x2− 4| = |x− 2||x+ 2| < 5|x− 2|. However we need the added requirement |x− 2| < ε/5.

Proof. Choose δ = min(1, ε/5), then for all ε > 0 we have

|x− 2| < δ ⇒ |f(x)− 4| = |x2 − 4| = |x− 2||x+ 2| < 5|x− 2| < ε.

�


