
Math 3310 Rahman Chapter 5

5.1 Counterexamples

Almost always, a result worth mentioning will hold for infinitely many values for x. However, if this result
is false, we need only disprove it at a single point. This is called a counterexample.

Again its best to actually look at examples.

5.1) log does not exist for negative values.
5.3) If n = 3, 2n2 + 1 = 19, and 3 does not divide 19.
5.5) Notice that

(a + b)2(a + b) = (a + b)(a2 + 2ab + b2) = a3 + 2a2b + ab2 + a2b + 2ab2 + b3 = a3 + 3a2b + 3ab2 + b3.

This only works if 2ab = a2b + ab2, so we choose a = 1 and b = 2.
5.9) We may guess that this result may hold for some choice of x if n = 2. Then we may simply calculate

what that value of x must be,

x2 + (x+ 1)2 = (x+ 2)2 ⇒ x2 + x2 + 2x+ 1 = x2 + 4x+ 4⇒ x2− 2x− 3 = 0⇒ (x− 3)(x+ 1) = 0⇒ x = 3.

5.2 Proof by contradiction

It is not uncommon to try something and fail. But this may play to our advantage for proofs. Lets say
we want to prove P (x) ⇒ Q(x) where P is true. We disregard P is false because that is vacuous. Now, if
we assume Q is false, but fail to prove it, then we will have proved that Q is true. This is called a proof by
contradiction.

Lets look at the following example. A similar example is in the book for
√

2, which you should read and
understand.

Theorem 1.
√

3 is irrational.

Proof. Suppose not; i.e.,
√

3 ∈ Q. Then
√

3 = m/n such that n,m ∈ N, and suppose this is in lowest form;
i.e., n,m have no common factors. Then m2 = 3n2, so m is divisible by 3; i.e.,

m = 3k ⇒ 9k2 = 3n2 ⇒ n2 = 3k2,

so n is divisible by 3, but we assumed m and n have no common factors. This forms a contradiction. �

Now lets look at some simpler exercises from the book.

5.12) Proof. Suppose not, then there is an x ∈ Q such that −m/n ≤ x < 0 for all n,m ∈ N. However,
x/2 ∈ Q and x < x/2 < 0. This forms a contradiction. �

5.14) Proof. Suppose not; i.e., 200 = 2k + 1 + 2m + 2n for k,m, n ∈ Z. Then

200 = 2(k + m + n) + 1⇒ 100 = k + m + n + 1/2 /∈ Z.

This forms a contradiction. �
5.18) Proof. Suppose not. Let x ∈ Qc and m, r ∈ Q, then r = mx. Therefore, x = r/m, however the ratio

of rational numbers is rational since by definition rational numbers are the ratio of integers, so x is
also a ratio of integers. �

5.26) Suppose there is an x ∈ Z such that 2x < x2 < 3x⇒ 2 < x < 3. This forms a contradiction.

Next we move on to Section 5.4, but if you are having trouble with proofs it may be useful to read through
Section 5.3.
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5.4 Existence proofs

This won’t be on the first exam, but will be used with Calculus proofs, and since this is in this chapter,
lets look at a few examples.

5.42) Proof. Choose a = 0. �

The next couple of problems are quite interesting, but will never show up on any exam in this class due
to their difficulty. However, if you want to continue in math you will need to get used to these types of
ambiguous problems.

5.43) Proof. Notice that 2 ∈ Q and 1/2
√

2 ∈ Qc. Then if 21/2
√
2 ∈ Qc we are done. If 21/2

√
2 ∈ Q then(

21/2
√
2
)√2

=
√

2 ∈ Qc.

Either way there is an a and b such that ab is irrational. �

5.44) Proof. If
√

2
√
2 ∈ Q we are done. If

√
2
√
2 ∈ Qc, then

(√
2
√
2
)2/
√
2

= 2. Either way there is an a

and b such that ab is rational. �

The next problem is something we will see when we do Calculus proofs.

5.46) Proof. First lets show existence. Notice that p(2/3) = 8/27 + 4/9 − 1 = 20/27 − 1 < 1 and
p(1) = 1 > 0. Then by the Intermediate Value Theorem there is an x∗ such that p(x∗) = 0. Now
suppose there are two such points x1 and x2 such that 2/3 < x1 < x2 < 1 (W.L.O.G). Then
p(x1) < p(x2) because p′(x) = 3x2 + 2x = x(3x + 2) > 0 for x ∈ (2/3, 1), but p(x1) = p(x2) = 0.
This forms a contradiction, and hence there is only one such point. �


