Supplementary problems: Sec. 3.3 # 1-3; 3.4 # 3, 9, 15

Compulsory problems:

Since these sequences are nontrivial, please use induction whenever proving increasing/decreasing.

- (1) Suppose $0 < x_n < 1$ and $x_{n+1} = 1 \sqrt{1 x_n}$ for all $n \ge 1$.
 - (a) [5 pts.] Prove that $x_n > x_{n+1}$ for all $n \in \mathbb{N}$,
 - (b) [10 pts.] $x_n \to 0$ (Recall how to find the limit of a recurrence relation.) (Hint: for the limits there is no need to use the formal definition of a limit as long as you can prove the sequences are convergent, which you can do by using part (a).), and
 - (c) [5 pts.] $x_{n+1}/x_n \rightarrow 1/2$. (Use Calc II, not the definition.)
- (2) [10 pts.] This is # 3.3.4 in the book: If $x_1 = 1$, prove that $x_{n+1} := \sqrt{2 + x_n}$ converges and find its limit.
- (3) [15 pts.] Consider a sequence defined as $x_1 = 1/2$ and $x_{n+1} := x_n^2$. Prove that it has a limit and find that limit.
- (4) [5 pts.] Show that the sequence $x_n := \sin \frac{n\pi}{2}$ has convergent subsequences. (Don't use Bolzano–Weierstrass); come up with an example.
- (5) [+10 pts.] Prove that $(2n)^{1/n}$ is decreasing.

Your homework raw score is: $\frac{n}{2m} \cdot M + \left(1 - \frac{n}{2m}\right) \cdot N = N + \frac{n}{2m}(M - N)$. For this homework, M = 50, m = 6, N is the number of compulsory problems you get correct, and n is the number of supplementary problems you complete. It should be noted that for the supplementary problems I will be looking for **full completion**, but I won't take off points for mistakes.