MATH 4350 RAHMAN

5.2 Combinations of continuous functions

Theorem 1. Let $A \subseteq \mathbb{R}$, $b \in \mathbb{R}$, and $f, g : A \mapsto \mathbb{R}$. Suppose $c \in A$ and that f and g are continuous at c. Then,

- (1) $f \pm g$, fg, and $b \cdot f$ are continuous at c, and
- (2) if $h: A \mapsto \mathbb{R}$ is continuous at $c \in A$ and if $h(x) \neq 0$ for all $x \in A$, then f/h is also continuous at c.

Theorem 2. Let $A \subseteq \mathbb{R}$ and $f : A \mapsto \mathbb{R}$, then if f is continuous, so is |f|.

Proof. The limit of the absolute value will equal the limit of the function itself; i.e.,

$$\lim_{x \to c} |f(x)| = |\lim_{x \to c} f(x)| = |f(c)|.$$

It should be noted that this special treatment does not extend to C^1 (continuous derivative) functions. Take f(x) = x for example. It has a continuous derivative at x = 0, but g(x) = |x| does not.

Theorem 3. Let $A \subseteq \mathbb{R}$ and $f : A \mapsto \mathbb{R}$, then if f is continuous, so is \sqrt{f} .

Proof. Similarly to the theorem above,

$$\lim_{x \to c} \sqrt{f(x)} = \sqrt{\lim_{x \to c} f(x)} = \sqrt{f(c)}.$$

Now lets prove that compositions of continuous functions is continuous.

Theorem 4. Let $A, B \subseteq \mathbb{R}$, $f : A \mapsto \mathbb{R}$, and $g : A \mapsto \mathbb{R}$, such that $f(A) \subseteq B$. If f is continuous at $c \in A$ and g is continuous at $b = f(c) \in B$, then $g \circ f : A \mapsto \mathbb{R}$ is continuous at c.

Proof. Since g is continuous at $b \in B$, given $\varepsilon > 0$ there exists a $\delta_1 > 0$ such that $|y-b| < \delta_1 \Rightarrow |g(y)-g(b)| < \varepsilon$. For this δ_1 , since f is continuous at c, there is a δ_2 such that $|x-c| < \delta_2 \Rightarrow |f(x)-f(c)| = |y-b| < \delta_1$ if we let y = f(x). Then we have that for all $\varepsilon > 0$, there is a $\delta_2 > 0$ such that $|x-c| < \delta_2 \Rightarrow |g(f(x)) - g(f(c))| = |g(y) - g(b)| < \varepsilon$.

5.3 Continuous functions on an interval

Theorem 5 (Boundedness). Suppose $f : [a, b] \mapsto \mathbb{R}$ is continuous on [a, b], then f is bounded on [a, b].

Note: This does not hold for not-closed intervals. Consider the function f(x) = 1/x on (0, 1]. It is continuous but not bounded on that interval.

Proof. Suppose f is unbounded; i.e., for any M > 0, |f| > M for at least one $x \in [a, b]$. So, assume for $c \in [a, b]$, |f(c)| > M. Then for all $\delta > 0$, if $\varepsilon = M + \min(f(x))$ such that $x \in (x - \delta, x + \delta)$, $|x - c| < \delta \Rightarrow |f(x) - f(c)| > \varepsilon$.

Theorem 6 (Max-Min). Suppose $f : [a,b] \mapsto \mathbb{R}$ is continuous on [a,b], then f attains its absolute maximum and absolute minimum on [a,b].

Theorem 7 (Almost IVT). Suppose $f : [a,b] \mapsto \mathbb{R}$ is continuous on [a,b], then if f(a) < 0 < f(b) (or f(a) > 0 > f(b)), there exists $a \in (a,b)$ such that f(c) = 0.

The proof for this is quite involved, but you should read it in the book.

Theorem 8 (Intermediate Value Theorem). Suppose $f : [a,b] \mapsto \mathbb{R}$ is continuous on [a,b], then if f(a) < K < f(b), there is a $c \in (a,b)$ such that f(c) = K.

Proof. By the previous theorem, if f(a) - K < 0 < f(b) - K, then there is a $c \in (a, b)$ such that f(c) - K = 0. Therefore if f(a) < k < f(b), then f(c) = K. **Corollary 1.** Suppose $f : [\alpha, \beta] \mapsto \mathbb{R}$ is continuous on $[\alpha, \beta]$. Let $K \in \mathbb{R}$ satisfy $\inf(f([\alpha, \beta])) \leq K \leq \sup(f([\alpha, \beta]))$, then there is a $c \in [\alpha, \beta]$ such that f(c) = K.

Proof. By Max-Min, there exists $a, b \in [\alpha, \beta]$ such that $a = \inf(f([\alpha, \beta]))$ and $b = \sup(f([\alpha, \beta])) \Rightarrow f(c) \in [a, b]$. Then by IVT, there is a $c \in [\alpha, \beta]$ such that f(c) = K.

Theorem 9. Suppose $f : [a,b] \mapsto \mathbb{R}$ is continuous on [a,b], then the set $f([a,b]) := \{f(x) : x \in [a,b]\}$ is a closed and bounded interval.

Proof. Since f is continuous it is bounded, and so is f([a, b]).

Clearly any point $y \in f([a,b])$ such that $\inf(f([a,b])) < y < \sup(f([a,b]))$ is a limit point. Since we can choose a ball of radius $\varepsilon_* = \min(\frac{1}{2}(y - \inf(f([a,b]))), \frac{1}{2}(\sup(f([a,b]) - y)))$. Then all $B_{\varepsilon}(y)$ contains at least one element in $f([a,b]) \setminus \{y\}$.

Next, we see what happens if y is the supermum or infimum of the interval, which is guaranteed by the Min-Max theorem. Since [a, b] is closed, f attains its max and min, which means $\sup(f([a, b])) \in f([a, b])$ and $\inf(f([a, b])) \in f([a, b])$. This would in fact prove that f([a, b]) is closed by a previous result, but since that was done a few months ago, lets go ahead and prove that some $y = \inf(f([a, b]))$ or $y = \sup(f([a, b]))$ is a limit point of f([a, b]). Notice that by the definition of the supremum (and similarly infimum), $y - \varepsilon \in f([a, b])$, then all balls $B_{\varepsilon}(y)$ contains elements in $f([a, b]) \setminus \{y\}$. Since f([a, b]) contains all of its limit points, it is closed.

Corollary 2. Suppose $f: I \mapsto \mathbb{R}$ is continuous and I is an interval, then the set f(I) is also an interval.

Now lets look at a couple of important problems from the book.

5.3.5) Here we must show the polynomial p(x) has at least two real roots.

Proof. Since p(0) = -9 and p(-8) = 503, by IVT the function p(x) = 0 for some $x \in (-8, 0)$. Further, since p(0) = -9 and p(2) = 63, by IVT the function p(x) = 0 for some $x \in (0, 2)$. Therefore, it has at least two roots.

5.3.6) For this problem we need to prove that f(c) = f(c+1/2) for some $c \in [0, 1/2]$ if f(0) = f(1).

Proof. Consider the function g(x) = f(x) - f(x + 1/2). Without loss of generality, assume that f(0) > f(1/2). Then g(0) = f(0) - f(1/2) > 0 and g(1/2) = f(1/2) - f(1) = f(1/2) - f(0) < 0. Therefore, by IVT g(x) = 0 at some point $x = c \in [0, 1/2]$.