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5.2 Combinations of continuous functions

Theorem 1. Let A ⊆ R, b ∈ R, and f, g : A 7→ R. Suppose c ∈ A and that f and g are continuous at c.
Then,

(1) f ± g, fg, and b · f are continuous at c, and
(2) if h : A 7→ R is continuous at c ∈ A and if h(x) 6= 0 for all x ∈ A, then f/h is also continuous at c.

Theorem 2. Let A ⊆ R and f : A 7→ R, then if f is continuous, so is |f |.

Proof. The limit of the absolute value will equal the limit of the function itself; i.e.,

lim
x→c
|f(x)| = | lim

x→c
f(x)| = |f(c)|.

�

It should be noted that this special treatment does not extend to C1 (continuous derivative) functions.
Take f(x) = x for example. It has a continuous derivative at x = 0, but g(x) = |x| does not.

Theorem 3. Let A ⊆ R and f : A 7→ R, then if f is continuous, so is
√
f .

Proof. Similarly to the theorem above,

lim
x→c

√
f(x) =

√
lim
x→c

f(x) =
√
f(c).

�

Now lets prove that compositions of continuous functions is continuous.

Theorem 4. Let A,B ⊆ R, f : A 7→ R, and g : A 7→ R, such that f(A) ⊆ B. If f is continuous at c ∈ A
and g is continuous at b = f(c) ∈ B, then g ◦ f : A 7→ R is continuous at c.

Proof. Since g is continuous at b ∈ B, given ε > 0 there exists a δ1 > 0 such that |y−b| < δ1 ⇒ |g(y)−g(b)| <
ε. For this δ1, since f is continuous at c, there is a δ2 such that |x−c| < δ2 ⇒ |f(x)−f(c)| = |y−b| < δ1 if we
let y = f(x). Then we have that for all ε > 0, there is a δ2 > 0 such that |x− c| < δ2 ⇒ |g(f(x))−g(f(c))| =
|g(y)− g(b)| < ε. �

5.3 Continuous functions on an interval

Theorem 5 (Boundedness). Suppose f : [a, b] 7→ R is continuous on [a, b], then f is bounded on [a, b].

Note: This does not hold for not-closed intervals. Consider the function f(x) = 1/x on (0, 1]. It is
continuous but not bounded on that interval.

Proof. Suppose f is unbounded; i.e., for any M > 0, |f | > M for at least one x ∈ [a, b]. So, assume
for c ∈ [a, b], |f(c)| > M . Then for all δ > 0, if ε = M + min(f(x)) such that x ∈ (x − δ, x + δ),
|x− c| < δ ⇒ |f(x)− f(c)| > ε. �

Theorem 6 (Max-Min). Suppose f : [a, b] 7→ R is continuous on [a, b], then f attains its absolute maximum
and absolute minimum on [a, b].

Theorem 7 (Almost IVT). Suppose f : [a, b] 7→ R is continuous on [a, b], then if f(a) < 0 < f(b) (or
f(a) > 0 > f(b)), there exists a c ∈ (a, b) such that f(c) = 0.

The proof for this is quite involved, but you should read it in the book.

Theorem 8 (Intermediate Value Theorem). Suppose f : [a, b] 7→ R is continuous on [a, b], then if f(a) <
K < f(b), there is a c ∈ (a, b) such that f(c) = K.

Proof. By the previous theorem, if f(a)−K < 0 < f(b)−K, then there is a c ∈ (a, b) such that f(c)−K = 0.
Therefore if f(a) < k < f(b), then f(c) = K. �

1



Corollary 1. Suppose f : [α, β] 7→ R is continuous on [α, β]. Let K ∈ R satisfy inf(f([α, β])) ≤ K ≤
sup(f([α, β])), then there is a c ∈ [α, β] such that f(c) = K.

Proof. By Max-Min, there exists a, b ∈ [α, β] such that a = inf(f([α, β])) and b = sup(f([α, β])) ⇒ f(c) ∈
[a, b]. Then by IVT, there is a c ∈ [α, β] such that f(c) = K. �

Theorem 9. Suppose f : [a, b] 7→ R is continuous on [a, b], then the set f([a, b]) := {f(x) : x ∈ [a, b]} is a
closed and bounded interval.

Proof. Since f is continuous it is bounded, and so is f([a, b]).
Clearly any point y ∈ f([a, b]) such that inf(f([a, b])) < y < sup(f([a, b])) is a limit point. Since we can

choose a ball of radius ε∗ = min( 1
2 (y− inf(f([a, b]))), 12 (sup(f([a, b])− y))). Then all Bε(y) contains at least

one element in f([a, b]) \ {y}.
Next, we see what happens if y is the supermum or infimum of the interval, which is guaranteed by the

Min-Max theorem. Since [a, b] is closed, f attains its max and min, which means sup(f([a, b])) ∈ f([a, b]) and
inf(f([a, b])) ∈ f([a, b]). This would in fact prove that f([a, b]) is closed by a previous result, but since that
was done a few months ago, lets go ahead and prove that some y = inf(f([a, b])) or y = sup(f([a, b])) is a limit
point of f([a, b]). Notice that by the definition of the supremum (and similarly infimum), y − ε ∈ f([a, b]),
then all balls Bε(y) contains elements in f([a, b]) \ {y}. Since f([a, b]) contains all of its limit points, it is
closed. �

Corollary 2. Suppose f : I 7→ R is continuous and I is an interval, then the set f(I) is also an interval.

Now lets look at a couple of important problems from the book.

5.3.5) Here we must show the polynomial p(x) has at least two real roots.

Proof. Since p(0) = −9 and p(−8) = 503, by IVT the function p(x) = 0 for some x ∈ (−8, 0).
Further, since p(0) = −9 and p(2) = 63, by IVT the function p(x) = 0 for some x ∈ (0, 2).
Therefore, it has at least two roots. �

5.3.6) For this problem we need to prove that f(c) = f(c+ 1/2) for some c ∈ [0, 1/2] if f(0) = f(1).

Proof. Consider the function g(x) = f(x) − f(x + 1/2). Without loss of generality, assume that
f(0) > f(1/2). Then g(0) = f(0) − f(1/2) > 0 and g(1/2) = f(1/2) − f(1) = f(1/2) − f(0) < 0.
Therefore, by IVT g(x) = 0 at some point x = c ∈ [0, 1/2]. �


