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5.2 COMBINATIONS OF CONTINUOUS FUNCTIONS

Theorem 1. Let ACR, b€ R, and f,g: A— R. Suppose c € A and that f and g are continuous at c.
Then,

(1) f£g, fg, and b- [ are continuous at ¢, and
(2) if h: A= R is continuous at ¢ € A and if h(xz) £ 0 for all x € A, then f/h is also continuous at c.

Theorem 2. Let ACR and f: A— R, then if f is continuous, so is |f]|.
Proof. The limit of the absolute value will equal the limit of the function itself; i.e.,
tim | ()] = | tim ()] = |(c)I.
O

It should be noted that this special treatment does not extend to C' (continuous derivative) functions.
Take f(x) = x for example. It has a continuous derivative at = = 0, but g(x) = |z| does not.

Theorem 3. Let ACR and f: A— R, then if f is continuous, so is \/f.

Proof. Similarly to the theorem above,

lim /f(e) =, /lim f(2) = V/F(c).

r—c

Now lets prove that compositions of continuous functions is continuous.

Theorem 4. Let ABCR, f: A— R, and g : A — R, such that f(A) C B. If f is continuous at c € A
and g is continuous at b= f(c) € B, then go f: A R is continuous at c.

Proof. Since g is continuous at b € B, given £ > 0 there exists a 1 > 0 such that |y—b| < 61 = |g(y)—g(b)] <
e. For this d1, since f is continuous at ¢, there is a dy such that |z —c| < d2 = |f(x)— f(c)| = l[y—b| < 67 if we
let y = f(z). Then we have that for all £ > 0, there is a d > 0 such that |z —¢| < d2 = |g(f(x)) —g(f(c))| =
l9(y) —g(b)] <e. 0

5.3 CONTINUOUS FUNCTIONS ON AN INTERVAL
Theorem 5 (Boundedness). Suppose f : [a,b] — R is continuous on [a,b], then f is bounded on [a,b].

Note: This does not hold for not-closed intervals. Consider the function f(z) = 1/z on (0,1]. It is
continuous but not bounded on that interval.

Proof. Suppose f is unbounded; i.e., for any M > 0, |f| > M for at least one = € [a,b]. So, assume
for ¢ € [a,b], |f(c)] > M. Then for all 6 > 0, if ¢ = M + min(f(z)) such that z € (x — 0,z + J),
|z —c| <d=|f(x)— flc)] > e. O

Theorem 6 (Max-Min). Suppose f : [a,b] — R is continuous on [a,b], then f attains its absolute mazimum
and absolute minimum on [a,b).

Theorem 7 (Almost IVT). Suppose f : [a,b] — R is continuous on [a,b], then if f(a) < 0 < f(b) (or
fa) > 0> f(b)), there ezists a ¢ € (a,b) such that f(c) = 0.

The proof for this is quite involved, but you should read it in the book.

Theorem 8 (Intermediate Value Theorem). Suppose f : [a,b] — R is continuous on [a,b], then if f(a) <
K < f(b), there is a c € (a,b) such that f(c) =K.

Proof. By the previous theorem, if f(a)— K < 0 < f(b) — K, then there is a ¢ € (a, b) such that f(c)— K = 0.
Therefore if f(a) < k < f(b), then f(c) = K. O



Corollary 1. Suppose f : [a, ] — R is continuous on [a,3]. Let K € R satisfy inf(f([a, f])) < K <
sup(f([e, B])), then there is a ¢ € [o, B] such that f(c) = K.

Proof. By Max-Min, there exists a,b € [«, 8] such that a = inf(f([cr, 8])) and b = sup(f([«, 5])) = f(c) €
[a,b]. Then by IVT, there is a ¢ € [o, 8] such that f(c) = K. O

Theorem 9. Suppose f : [a,b] — R is continuous on [a,b], then the set f([a,b]) == {f(x) : x € [a,b]} is a
closed and bounded interval.

Proof. Since f is continuous it is bounded, and so is f([a, b]).

Clearly any point y € f([a,b]) such that inf(f([a,b])) < y < sup(f([a,b])) is a limit point. Since we can
choose a ball of radius e, = min($(y — inf(f([a,d]))), 2 (sup(f([a,b]) —y))). Then all B.(y) contains at least
one element in f([a,b]) \ {y}.

Next, we see what happens if y is the supermum or infimum of the interval, which is guaranteed by the
Min-Max theorem. Since [a, ] is closed, f attains its max and min, which means sup(f([a,b])) € f([a,b]) and
inf(f([a,b])) € f(a,b]). This would in fact prove that f([a,b]) is closed by a previous result, but since that
was done a few months ago, lets go ahead and prove that some y = inf(f([a, b])) or y = sup(f([a,b])) is a limit
point of f([a,b]). Notice that by the definition of the supremum (and similarly infimum), y — ¢ € f([a, b]),
then all balls B.(y) contains elements in f([a,b]) \ {y}. Since f([a,b]) contains all of its limit points, it is
closed. O

Corollary 2. Suppose f : I+ R is continuous and I is an interval, then the set f(I) is also an interval.

Now lets look at a couple of important problems from the book.
5.3.5) Here we must show the polynomial p(z) has at least two real roots.

Proof. Since p(0) = —9 and p(—8) = 503, by IVT the function p(z) = 0 for some z € (—8,0).
Further, since p(0) = —9 and p(2) = 63, by IVT the function p(z) = 0 for some = € (0,2).
Therefore, it has at least two roots. O

5.3.6) For this problem we need to prove that f(c) = f(¢+ 1/2) for some ¢ € [0,1/2] if f(0) = f(1).

Proof. Consider the function g(z) = f(x) — f(x + 1/2). Without loss of generality, assume that

7(0) > £(1/2). Then g(0) = £(0) — f(1/2) > 0 and g(1/2) = f(1/2) — (1) = £(1/2) — f(0) < 0.
Therefore, by IVT g(z) = 0 at some point z = ¢ € [0,1/2]. O



