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5.4 Uniform Continuity

Definition 1. Let A ⊆ R, and f : A 7→ R. We say f is uniformly continuous on A if
for all ε > 0 there is a δ > 0 such that for all x, y ∈ A, |x− y| < δ ⇒ |f(x)− f(y)| < ε.

Now lets look at a few examples,

Ex: f(x) = 1/x is not uniformly continuous on A = (0, 1]

Proof. Let ε = 10 and suppose we can find 0 < δ < 1 to satisfy |x − y| < δ ⇒ |f(x) − f(y)| < ε.
However, if x = δ and y = δ/11 we have

|x− y| < δ ⇒ |f(x)− f(y)| = 11

δ
− 1

δ
=

10

δ
> 10 = ε.
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Ex: f(x) = x2 is uniformly continuous on A = (0, 1]

Proof. Notice that |f(x) − f(y)| = |x2 − y2| = |(x − y)(x + y)| < 2|x − y|. If |x − y| < δ, then
|f(x)− f(y)| < 2δ, then choosing δ = ε/2 gives us |f(x)− f(y)| < ε. �

Ex: Now lets show that f(x) = x2 is not uniformly continuous on R.

Proof. Let ε = 2, and suppose that we can find δ > 2 to satisfy |x − y| < δ ⇒ |f(x) − f(y)| < ε.
However, if x = δ and y = δ/2 we have

|x− y| < δ ⇒ |f(x)− f(y)| = δ2 − δ2

4
=

3

4
δ2 > 3 > ε.
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There seems to be an interesting connection between continuity and uniform continuity, which is something
Heine proved.

Theorem 1 (Heine). Let I be a closed and bounded interval and f : I 7→ R is continuous on I. Then f is
uniformly continuous on I.

When is f uniformly continuous on a nonclosed interval? I have written one result down, but lets think
of other possibilities. I think if f is continuous on I and f(Ī) is closed, then f is uniformly continuous. Let
us have this as an extra credit. So prove or disprove for an extra 25 points on your homework raw score.

Theorem 2 (Continuous Extensions). A function f is uniformly continuous on (a, b) if and only if it can
be defined at the end points a and b such that the extended function is continuous on [a, b].

I personally think a result on the closure would be nicer.
We already showed that a Lipschitz function is continuous, but is it uniformly continuous?

Theorem 3. If f : A 7→ R is Lipschitz continuous, then f is uniformly continuous on A

Proof. Since f is Lipschitz, |f(x)− f(y)| ≤ K|x− y| for some K > 0. Then choose δ = ε/K. Therefore,

|x− y| < δ ⇒ |f(x)− f(y)| ≤ K|x− y| < K · ε
K

= ε.
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There is also an interesting result connecting Cauchy sequences to uniformly continuous functions.

Theorem 4. If f : A 7→ R is uniformly continuous on A, then {xn} is Cauchy on A implies {f(xn)} is
Cauchy on R.

Proof. Since {xn} is Cauchy, for all δ > 0 there is an M such that |xn − xm| < δ for all n,m ≥M . Further,
since f is uniformly continuous, for all ε > 0 there is a δ > 0 such that |x− y| < δ ⇒ |f(x)− f(y)| < ε for
all x, y ∈ A. Therefore, |f(xn)− f(xm)| < ε for all n,m ≥M , hence it is Cauchy on R. �

Now, for the most remarkable theorem in this chapter, that we will never use.
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Theorem 5 (Weierstrass Approximation Theorem). Let f : [a, b] 7→ R be continuous on [a, b]. If ε > 0,
then there is a polynomial pε such that |f(x)− pε(x)| < ε for all x ∈ [a, b].

This says that the set of polynomials is dense in the set of continuous functions; i.e., any continuous
function can be approximated as close as we want with a polynomial. The tricky part is finding such a
polynomial. Notice that this is more powerful than Taylor’s theorem because Taylor requires n derivatives,
but Taylor is more useful in applications.

5.6 Monotone and Inverse Functions

We know what these are, so lets discuss some results.

Theorem 6 (Continuous Inverse). Let I ⊆ R be an interval and let f : I 7→ R be strictly monotone and
continuous on I. Then f−1 is strictly monotone and continuous on f(I).

Lets also talk about jump discontinuities.

Definition 2. We say the jump of f at c to be jf (x) := limx→c+ f − limx→c− f if f : I 7→ R is increasing
on I and if c is not an endpoint of I.

Theorem 7. Let I ⊆ R be an interval and let f : I 7→ R be monotone on I. Then the set of points D ⊆ I
at which f is discontinous is a countable set.


