MATH 4350 RAHMAN Week 13

5.4 UNIFORM CONTINUITY

Definition 1. Let A CR, and f: A+— R. We say f is uniformly continuous on A if
for all £ > 0 there is a 6 > 0 such that for all z,y € A, |z —y| < d = |f(z) — f(y)| <e.

Now lets look at a few examples,
Ex: f(x) =1/ is not uniformly continuous on A = (0, 1]

Proof. Let ¢ = 10 and suppose we can find 0 < § < 1 to satisfy |z —y| < 0 = |f(z) — f(y)] < e.

However, if x =6 and y = 6/11 we have
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[z =yl <= |fl2) - fy)l= 5 —5=75 >10==

Ex: f(x) = 2? is uniformly continuous on A = (0, 1]

Proof. Notice that |f(z) — f(y)| = |2 — y?| = [(z — y)(z + y)| < 2|z —y|. If [z —y| < J, then
|f(z) — f(y)] < 20, then choosing § = €/2 gives us |f(z) — f(y)| <e. O

Ex: Now lets show that f(z) = 22 is not uniformly continuous on R.

Proof. Let € = 2, and suppose that we can find § > 2 to satisfy |z —y| < § = |f(z) — f(y)| < e.
However, if x = ¢ and y = §/2 we have
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o=yl <0 = [f(2) = fly) = 6" = = 6" >3 >
]

There seems to be an interesting connection between continuity and uniform continuity, which is something
Heine proved.

Theorem 1 (Heine). Let I be a closed and bounded interval and f : I — R is continuous on I. Then f is
uniformly continuous on I.

When is f uniformly continuous on a nonclosed interval? I have written one result down, but lets think
of other possibilities. I think if f is continuous on I and f(I) is closed, then f is uniformly continuous. Let
us have this as an extra credit. So prove or disprove for an extra 25 points on your homework raw score.

Theorem 2 (Continuous Extensions). A function f is uniformly continuous on (a,b) if and only if it can
be defined at the end points a and b such that the extended function is continuous on [a,b].

I personally think a result on the closure would be nicer.
We already showed that a Lipschitz function is continuous, but is it uniformly continuous?

Theorem 3. If f: A— R is Lipschitz continuous, then f is uniformly continuous on A
Proof. Since f is Lipschitz, |f(x) — f(y)] < K|z — y| for some K > 0. Then choose § = ¢/K. Therefore,

o=yl < 5= [f(2) — fW)| < Ko —y| < K- = =

K €.

There is also an interesting result connecting Cauchy sequences to uniformly continuous functions.

Theorem 4. If f : A — R is uniformly continuous on A, then {x,} is Cauchy on A implies {f(x,)} is
Cauchy on R.

Proof. Since {z,} is Cauchy, for all § > 0 there is an M such that |x,, — ;| < 6 for all n,m > M. Further,
since f is uniformly continuous, for all € > 0 there is a ¢ > 0 such that |z —y| < = |f(x) — f(y)| < € for
all z,y € A. Therefore, |f(z,) — f(zm)| < € for all n,m > M, hence it is Cauchy on R. O

Now, for the most remarkable theorem in this chapter, that we will never use.
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Theorem 5 (Weierstrass Approximation Theorem). Let f : [a,b] — R be continuous on [a,b]. If ¢ > 0,
then there is a polynomial p. such that |f(z) — p(z)| < e for all z € [a,]].

This says that the set of polynomials is dense in the set of continuous functions; i.e., any continuous
function can be approximated as close as we want with a polynomial. The tricky part is finding such a
polynomial. Notice that this is more powerful than Taylor’s theorem because Taylor requires n derivatives,
but Taylor is more useful in applications.

5.6 MONOTONE AND INVERSE FUNCTIONS
‘We know what these are, so lets discuss some results.

Theorem 6 (Continuous Inverse). Let I C R be an interval and let f : I — R be strictly monotone and
continuous on I. Then f=1 is strictly monotone and continuous on f(I).

Lets also talk about jump discontinuities.

Definition 2. We say the jump of f at c to be jf(x) := lim, .+ f —lim, .~ f if f: I — R is increasing
on I and if ¢ is not an endpoint of I.

Theorem 7. Let I C R be an interval and let f : I — R be monotone on I. Then the set of points D C I
at which f is discontinous is a countable set.



