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6.2 The Mean Value Theorem

Here we will just cover a bunch of theorems that will lead up to the Mean Value Theorem.

Theorem 1. If f defined on (a, b) has a local maximum (or minimum) at x, and f is differentiable at x,
then f ′(x) = 0.

Proof. Since f(x) is maximum at x, f(x) ≥ f(x+h) for all h such that x+h ∈ (a, b). Then f(x+h)−f(x) ≤ 0.
If h ≥ 0,

lim
h→0+

f(x+ h)− f(x)

h
≤ 0,

and if h < 0,

lim
h→0−

f(x+ h)− f(x)

h
≥ 0.

Since the derivative exists, f ′(x) = 0 because otherwise the left hand derivative and right hand derivative
would be different. �

Theorem 2 (Rolle’s). If f is continuous on [a, b] and differentiable on (a, b), and f(a) = f(b), then there
is an x ∈ (a, b) such that f ′(x) = 0.

Proof. Since f is continuous, a maximum and minimum exist. If the maximum or minimum occurs in the
interior, f ′(x) = 0 by the previous theorem. If they occur at the end points, f(x) = f(a) = f(b), so it is a
constant, and therefore the derivative is trivially f ′(x) = 0. �

Theorem 3 (Mean Value Theorem). If f is continuous on [a, b] and differentiable on (a, b), then there is a
ξ ∈ (a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a
. (1)

Proof. Lets define a function

h(x) := f(x)− f(b)− f(a)

b− a
[x− a]. (2)

Notice that h satisfies the hypotheses of Rolle’s theorem. Then h′(ξ) = 0 for some ξ ∈ (a, b), and hence

f ′(ξ)− f(b)− f(a)

b− a
= 0⇒ f ′(ξ) =

f(b)− f(a)

b− a
.

�

6.3 Indeterminate Forms

We will just go over this briefly since you have seen all of this in Calc I.
Recall the types of indeterminate forms

0

0

∞
∞

0 · ∞ ∞−∞ 00 1∞ ∞0.

Remember that L’Hôpital can only be used with the first two cases, which means you would need to convert
any other case to the type in the first two: 0/0 or ∞/∞.

Lets look at a couple of examples,

lim
x→∞

1x = 1

because the base is already unity. It is not changing. So if we take x as big as we want 1x will still be 1.
1



Now lets look at a 1∞ case that is actually indeterminate,

L = lim
x→∞

(
1 +

1

x

)x

.

For this one we need to use our eln trick.

L = exp

(
lim
x→∞

x ln

(
1 +

1

x

))
We need to look at the argument separately, and then plug it back in if it exists. Notice that the argument,
however, is not in a proper indeterminate form. We need to change it to one of the two cases where we can
use L’Hôpital.

lim
x→∞

x ln

(
1 +

1

x

)
= lim

x→∞

ln
(
1 + 1

x

)
1/x

.

Then applying L’Hôpital give us

lim
x→∞

���(1/x)′/ ln
(
1 + 1

x

)
���(1/x)′

= lim
x→∞

1

ln
(
1 + 1

x

) = 1.

Plugging back into the original limit gives us

L = exp

(
lim
x→∞

x ln

(
1 +

1

x

))
= e

6.4 Taylor’s Theorem

Suppose the function f has the following power series:

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · · =
∞∑

n=0

cn(x− a)n. (3)

Can we figure out what the coefficients are? Yes, yes we can. Notice that f(a) = c0, so that gives us the first
coefficient. For the second one lets differentiate to get f ′(x) = c1 + 2c2(x− a) + 3c3(x− a)2 + · · · . Now, if
we plug in a we get f ′(a) = c1. How about the third? Well, f ′′(x) = 2c2 + 6c3(x− a) + · · · , so f ′′(a) = 2c2.
Can we figure out what cn should be? Well we see that if we keep taking derivatives and evaluating them
at the center, we get f (n)(x) = n!cn + · · · , so cn = f (n)(x)/n!. We have just derived a general formula for
finding the coefficients of our series.

Definition 1. The series representation

f(x) =

∞∑
n=0

f (n)(a)

n!
(x− a)n = f(a) + f ′(a)(x− a) +

f ′′(a)

2
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + · · · (4)

is called a Taylor series of f at x = a. If a = 0 we simply call this the Taylor series of f at x = 0 or the
McLaurin series of f - both are used interchangeably.

Theorem 4 (Taylor). Let f : [a, b] 7→ R have n continuous derivatives and let f (n+1) exist on (a, b). Then
for x0 ∈ [a, b],

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + · · ·+ f (n)(x0)

n!
(x− x0)n +

f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1 (5)

for some ξ between x and x0.



Proof. For some t between x and x0 define F as

F (t) := f(x)− f(t)− (x− t)f ′(t)− · · · − (x− t)n

n!
f (n)(t). (6)

Taking the derivative gives us

F ′(t) =((((
(((−f ′(t) + f ′(t)

((((
((((

((((
((

−(x− t)f ′′(t) +
2

2!
(x− t)f ′′(t)−· · ·

((((
((((

((((
(((

((((

− (x− t)n−1

(n− 1)!
f (n)(t) +

n

n!
(x− t)n−1f (n)(t)− (x− t)n

n!
f (n+1)(t).

Now define

G(t) := F (t)−
(
x− t
x− x0

)n+1

F (x0), (7)

then G(x0) = G(x). By the Mean Value Theorem, there is a ξ between x and x0 such that G′(ξ) = 0.
Therefore,

F (x0) = − 1

n+ 1
· (x− x0)n+1

(x− ξ)n
F ′(ξ) = − 1

n+ 1
· (x− x0)n+1

(x− ξ)n
· (x− t)n

n!
f (n+1)(t) =

f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1.

Notice that this is precisely the remainder of the Taylor series. �

Ex: Find the Taylor series of f(x) = ex and its radius of convergence.
Solution: This is easy because we can find the nth derivative of ex straightaway, i.e. f (n)(x) =

ex, hence f (n)(0) = 1. So ex =
∑∞

n=0 x
n/n!. Now, this is still a power series so like any other power

series we can find the radius of convergence by using either root or ratio test. Lets apply ratio test,∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣ xn+1

(n+ 1)!
· n!

xn

∣∣∣∣ =
|x|
n+ 1

.

Taking the limit gives us limn→∞ |an+1/an| = 0, so R = ∞. Therefore, the Taylor series converges
everywhere and it is an exact representation of ex.

Ex: Find the Taylor series of f(x) = sinx.
Solution: Again we have a nice pattern for this one (Hint: I like functions with nice patterns!)

f(0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1, and the pattern just keeps repeating, so

sinx = x− x3

3!
+
x5

5!
+ · · · =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!


