MATH 4350 RAHMAN Week 15

6.2 THE MEAN VALUE THEOREM
Here we will just cover a bunch of theorems that will lead up to the Mean Value Theorem.

Theorem 1. If f defined on (a,b) has a local maximum (or minimum) at z, and f is differentiable at x,
then f'(x) = 0.

Proof. Since f(x) is maximum at z, f(z) > f(x+h) for all h such that x+h € (a,b). Then f(z+h)—f(x) < 0.
Ifh>0,
fl@+h) - f(z)

hli?& h =0,
and if h < 0,

lim M > 0.

h—0— h
Since the derivative exists, f'(z) = 0 because otherwise the left hand derivative and right hand derivative
would be different. O

Theorem 2 (Rolle’s). If f is continuous on [a,b] and differentiable on (a,b), and f(a) = f(b), then there
is an x € (a,b) such that f'(x) = 0.

Proof. Since f is continuous, a maximum and minimum exist. If the maximum or minimum occurs in the
interior, f’(x) = 0 by the previous theorem. If they occur at the end points, f(z) = f(a) = f(b), so it is a
constant, and therefore the derivative is trivially f/(z) = 0. O

Theorem 3 (Mean Value Theorem). If f is continuous on [a,b] and differentiable on (a,b), then there is a
& € (a,b) such that

1oy J(0) = f(a)
e = = Tta) )
Proof. Lets define a function
b) —
) = f(a) - LU= g 2
Notice that h satisfies the hypotheses of Rolle’s theorem. Then h/(§) = 0 for some £ € (a,b), and hence
/ f0) = fla) _ 1oy £(0) = f(a)
f(f)—ﬁ—()@f(f)—ﬁ-

6.3 INDETERMINATE FORMS

We will just go over this briefly since you have seen all of this in Calc I.
Recall the types of indeterminate forms
0 00

— — 000 00 — 00 0°
0 00

1*° oo
Remember that L.’Hopital can only be used with the first two cases, which means you would need to convert
any other case to the type in the first two: 0/0 or co/oo.

Lets look at a couple of examples,

lim 1" =1
T—00

because the base is already unity. It is not changing. So if we take x as big as we want 1* will still be 1.
1



Now lets look at a 1°° case that is actually indeterminate,

1 xT
L = lim (1 + ) .
Tr—ro0 xT
For this one we need to use our e™ trick.

1
L =exp < lim zln (1+ )>
Z—00 T

We need to look at the argument separately, and then plug it back in if it exists. Notice that the argument,
however, is not in a proper indeterminate form. We need to change it to one of the two cases where we can
use L’Hopital.
1 In (142
lim zIn (1 + > = lim M
T—00 X T—00 l/x

Then applying L’Hopital give us

In(1+1
fm /) 1

Plugging back into the original limit gives us

Lexp(lim xln<1+1>> =e
T—00 T

6.4 TAYLOR’S THEOREM

Suppose the function f has the following power series:
fx)=co+c(zr—a)+c(r—a)’+cs(z—a)’+--- = ch(x —a)". (3)
n=0

Can we figure out what the coefficients are? Yes, yes we can. Notice that f(a) = co, so that gives us the first
coefficient. For the second one lets differentiate to get f'(z) = ¢1 + 2ca(x — a) + 3cz(x — a)? + - --. Now, if
we plug in a we get f'(a) = ¢;. How about the third? Well, f”(x) = 2¢y + 6e3(x —a) + -+, so f(a) = 2cs.
Can we figure out what ¢, should be? Well we see that if we keep taking derivatives and evaluating them
at the center, we get f(™(z) = nlc, + -, s0 ¢, = f(x)/n!. We have just derived a general formula for
finding the coefficients of our series.

Definition 1. The series representation

f"(a)

n!

& (n) a "(a
£ = LD 00y = p@) + Pl -0+ Lot
n=0 !

(0—a) +- (1)
2

is called a Taylor series of f at ¢ = a. If a = 0 we simply call this the Taylor series of f at x = 0 or the

McLaurin series of f - both are used interchangeably.

Theorem 4 (Taylor). Let f : [a,b] — R have n continuous derivatives and let f™+V) exist on (a,b). Then
for xo € [a,b],
n o SOV

(@ —wo)" + T — @)™ (5)

£(2) = f(zo) + F'(zo)(w — a0) + 5 (o) — wo)? + - + )

for some € between x and xg.



Proof. For some t between = and zy define F' as

Taking the derivative gives us

F/(t) = =[O+ 7 (2 — 0f”

Now define

mw:F@—(xtYHFum 7)

r — X
then G(z9) = G(x). By the Mean Value Theorem, there is a & between z and zy such that G'(§) = 0.

Therefore,

L (z—m)" I (z—a)"" (x—t)" ()
F - _ . F — . . D)y =4 Sl n+l
Notice that this is precisely the remainder of the Taylor series. |

Ex: Find the Taylor series of f(z) = €® and its radius of convergence.
Solution: This is easy because we can find the n'® derivative of e® straightaway, i.e. f(")(z) =
e®, hence f(™(0) =1. So e* = oo o x™/n!. Now, this is still a power series so like any other power
series we can find the radius of convergence by using either root or ratio test. Lets apply ratio test,

n+1 n!

x
(n+1)! S an
Taking the limit gives us lim;, o0 |@nt1/an| = 0, S0 R = co. Therefore, the Taylor series converges
everywhere and it is an exact representation of e”.
Ex: Find the Taylor series of f(z) = sinz.
Solution: Again we have a nice pattern for this one (Hint: I like functions with nice patterns!)

f(0)=0, f/(0) =1, f’(0) =0, f”(0) = —1, and the pattern just keeps repeating, so

sl
n+1’

An+1
an

r e’}
3 5 l,2n+1

. X € n



