
Math 4350 Rahman Week 3

2.1 Properties of R

We listed properties 2.1.1 - 2.1.3 from the book.
Recall that we can write even and odd numbers as n = 2k and n = 2k + 1. Notice that (2k)2 = 4k2 =

2 · (2k)2 and (2k + 1)2 = 4k2 + 4k + 1 = 2 · (2k2 + 2k) + 1. So, the square of evens are even and the square
of odds are odd. Further, notice that by the fundamental theorem of arithmetic if x2 is divisible by p where
p is a prime, then so is x. We can use these properties to prove that certain square roots are irrational.

Theorem 1.
√

3 is irrational.

Proof. Suppose not; i.e.
√

3 is rational. Then
√

3 = m/n such that m,n ∈ N and suppose this is in lowest
form (since we can factor); i.e. m and n have no common factors. Then m2 = 3n2, so m is divisible by 3;
i.e. m = 3k ⇒ 9k2 = 3n2 ⇒ n2 = 3k2, so n is divisible by 3, but m and n have no common factors. This
forms a contradiction, therefore

√
3 is not rational. �

Next we briefly went over 2.1.5 - 2.1.8 before proving the next theorem

Theorem 2. If x ∈ R such that 0 ≤ x < ε for all ε > 0, then x = 0.

Proof. Suppose x > 0, then we can chose ε = x/2, which forms a contradiction. Therefore, x = 0. �

Then we finished off the section by going over 2.1.10 and 2.1.11.

2.2 Absolute value and R

We first went over 2.2.1 and 2.2.2 before showing the triangle inequality.

Theorem 3 (Triangle Inequality). For x, y ∈ R, |x+ y| ≤ |x|+ |y|.

Proof. Since −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y|, −(|x|+ |y|) ≤ x+ y ≤ |x| = |y|, then |x+ y| ≤ |x|+ |y|. �

What about for |x| − |y|? Notice that |x| ≥ |x + y| − |y|. If we let x = a + b and y = −b, then
|a + b| ≥ |a| − |b|. Also, if x = a − b and y = b, then |a − b| ≥ |a| − |b|. It’s also easy to show that
the triangle inequality holds for more than two elements by applying the original triangle inequality twice:
|x+ y + z| ≤ |x|+ |z + y| ≤ |x|+ |y|+ |z|.

Definition 1. Let x0, ε ∈ R such that ε > 0. Then the ε-neighborhood (ball) around x0 is Bε(x0) := {x ∈
R : |x− x0| < ε.

Theorem 4. If x ∈ Bε(x0) for all ε > 0, then x = x0.

Proof. Notice that |x− x0| < ε for all ε > 0, then x = x0. �

This proof is a direct application of Theorem 2 from the previous section. In essence this says that x0 is
the only element contained in every ball about itself.
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2.3 Completeness of R

First we define some preliminaries.

Definition 2. Let S ⊆ R such that S 6= ∅, then

(1) S is bounded above if there is an M ∈ R such that s ≤ M for all s ∈ S, where each M is called an
upper bound of S.

(2) Similarly S is bounded below if there is an m ∈ R such that s ≥ m for all s ∈ S, where each m is
called a lower bound of S.

(3) A set is said to be bounded if it is bounded from both above and below, otherwise it is said to be
unbounded.

Definition 3. With the same general assumptions as above,

(1) If S is bounded above, M is a supremum (supS) if

(a) M is an upper bound of S, and
(b) M ≤M1 for all upper bounds M1 of S.

(2) If S is bounded below, m is an infimum (inf S) if

(a) m is a lower bound of S, and
(b) m ≥ m1 for all lower bounds m1 of S.

For example sup[0, 1] = sup[0, 1) = 1. So, the supremum can be in the set or out of the set. There are
also many other upper and lower bounds of these sets, but the sup and inf are special.

Axiom 1 (Completeness of R). Every nonempty set S ⊆ R that is bounded above has a supremum; i.e.
there is an M ∈ R such that M = supS.

For example, R \ {0} is not complete. Consider S = [−1, 0). Can we find a supremum? We cannot since
supS = 0 in R, but {0} is not part of our new set.

Theorem 5 (Approximation property). Let S ⊆ R such that S 6= ∅ with M = supS. Then for all a < M
there is an x ∈ S such that a < x ≤M .

Proof. Notice x ≤M for all x ∈ S. If x ≤ a for all x ∈ S, then a would be an upper bound smaller than the
supremum, which forms a contradiction. Therefore, there is at least one x ∈ S where x > a. �

Can inf S = supS? It can if there is only one element in the set S. This is because inf S ≤ x ≤ supS for
all x ∈ S, and since inf S = supS, inf S = x = supS for all x ∈ S, which means S = {x}. We can also do
this proof using balls, but that would not be the “book proof”.

2.4 Applications of the supremum

Theorem 6 (Additive property). Given nonempty subsets A,B ⊆ R, let C = {x+ y : x ∈ A, y ∈ B}. If A
and B have supremums, then so does C and supC = supA+ supB.

Proof. If z ∈ C then there is an x ∈ A and y ∈ b such that z = x+ y, so z ≤ supA+ supB ⇒ supA+ supB
is an upper bound of C. Hence C has a supremum (by completeness) and supC ≤ supA+ supB.

Next we must show supA+ supB ≤ supC. For ε > 0, there is an x ∈ A, y ∈ B such that supA− ε < x
and supB − ε < y. Then adding the two gives us supA + supB − 2ε < x + y ≤ z ≤ supC. Therefore,
supA + supB < supC + 2ε for all ε, so by Theorem 2, supA + supB ≤ supC. Thereby completing the
proof. �

Theorem 7 (Comparison property). Given nonempty sets S, T ⊆ R such that s ≤ t for all s ∈ S, t ∈ T . If
T has a supremum, so does S and supS ≤ supT .

Proof. s ≤ t ≤ supT means that S has an upper bound, and hence by completeness it has a supremum.
If supS > supT , then there would exist s, t such that s > t, which forms a contradiction. Therefore,
supS ≤ supT . �



Notice that if supS > supT , s > t if we chose s = 1
2 (supS + supT ).

Theorem 8. Z+ is unbounded above.

Proof. Suppose Z+ is bounded, then it has a supremum. Then there is an n ∈ Z+ such that supZ+− 1 < n
(we use −1 since the smallest ε ∈ Z such that ε > 0 is ε = 1). Since n + 1 ∈ Z+ and n + 1 > supZ+, this
forms a contradiction, thereby completing the proof. �

Note that Theorem 2.4.3 in the book follows directly from this.
Also, in my opinion the density theorem theorem in the book does not give a complete picture, so lets

discuss it after intervals. However, make sure you go through the proofs in the book.


