
Math 4350 Rahman Week 4

2.5 Intervals

We went over examples of open, closed, and neither open nor closed intervals. We discussed what end
points were and how to find the length. Recall that nested intervals are a sequence of intervals contained
one inside the other; i.e. In ⊇ In+1 for all n ∈ N. For example the following are both nested intervals:
In = [0, 1/n] and In = (0, 1/n). Now, lets look at some properties of nested intervals.

Property 1 (Nested intervals). If In = [an, bn] where n ∈ N is a nested sequence of closed bounded intervals,
then there exists ξ ∈ R such that ξ ∈ In for all n ∈ N.

What happens for open sets? For example, In = (0, 1/n). Here In → ∅ since zero isn’t in any In.
Another way we can write the above property as as follows, ∩∞n=1In 6= ∅ and if length(In) → 0, ∩∞n=1In

contains only one point.
I will write the proof differently from that of the book, but you should be acquainted with both proofs.

The more proofs you read, the better you get at proving.

Proof. Since In are nested, a1 ≤ a2 ≤ · · · ≤ an < bn ≤ · · · ≤ b2 ≤ b1, so In is bounded for all n ∈ N. Now
we can define a sequence ξn such that ξn = (an + bn)/2. Then ξ ∈ Ik for all k ≤ n. Since this holds for all
n ∈ N, In 6= ∅ for all n ∈ N and ξn → ξ ∈ In for all n ∈ N. �

Make sure to read 2.5.3 and 2.5.4 on your own.
We did a few examples of binary digits and we know what decimal digits are.
Now, lets prove that R is uncountable. But before we jump into it, we need to convince ourselves that

intervals of R have just as many elements as R itself. Consider the following function

f : [0, 1)→ R+, such that f(x) :=
1

1− x
− 1. (1)

This function maps the interval into the positive reals. We would still have to show the usual properties
such as bijection, so make sure you write out the bijection proof to convince yourself that this works.

Theorem 1. R is uncoutnable.

This is similar to the second uncountability proof in your book, but I change it up a bit. The strategy is
going to be showing the interval (0, 1) is uncountable via contradiction.

Proof. Suppose that (0, 1) is countable. Then there is a sequence s = {sn} whose terms constitute the
entire interval. Lets write sn = 0.un,1un,2un,3 · · · where each un,i = 0, 1, . . . , 9. Consider the real number
y = 0.v1v2v3 · · · where

vn =

{
1 un,n 6= 1

2 un,n = 1;

then there is no {sn} that can be y, since y differs from s1 in u1,1, from s2 in u2,2, from sn in un,n, etc. �

We can use this argument because of how much “stuff” is in the reals. We can’t use this argument for the
rationals because every rational number either has a finite decimal representation or can be represented with
a repeating decimal. So, changing one digit will just change y into a different rational number represented
by some sn. Of course, this is not a proof that the rationals are countable! This is simply a consequence of
them being countable.

Before we move onto the next section lets discuss a couple of concepts that aren’t in the book.
Metric spaces have the following properties for elements x, y in a metric space:

(1) d(x, x) = 0

(2) d(x, y) > 0 if x 6= y

(3) d(x, y) = d(y, x)

(4) d(x, y) ≤ d(x, z) + d(z, y)
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where d is a distance. In the reals we can use the distance d(x, y) = |y− x|. Notice that the last property is
just the triangle inequality.

We can’t give a formal definition of closure since we haven’t discussed condensation points and limit
points, but lets think of what it means intuitively. The closer of a set will be the set itself unioned with all
the points that make it not closed. So for example the closure of (0, 1) is (0, 1) = (0, 1)∪ {0, 1} = [0, 1]. The
closure of the rationals is Q = Q∪Qc = R. If we know what closure is, we can define density in a really nice
way.

Definition 1. In a metric space M if A ⊆ S ⊆ A, then A is said to be dense in S.

So, with this definition we can see that the rationals are dense in the reals. Similarly the irrationals are
also dense in the reals.

3.1 Sequences

Definition 2. A sequence {xn} ⊆ R converges if there is an x ∈ R such that
For every ε > 0, there is an N such that |x− xn| ≤ ε for all n ≥ N;
otherwise it diverges. We call this x the limit of {xn}.

Notation: limn→∞ xn = x, xn → x as n→∞, or just xn → x.

Theorem 2 (Uniqueness). A sequence {xn} ⊆ R has at most one limit.

Proof. Assume xn → p and xn → q. By the triangle inequality, |p−q| ≤ |p−xn|+ |q−xn|. Since |p−xn| → 0
and |q − xn| → 0, |p− q| → 0⇒ p = q. �

Before we do the next theorem lets discuss subsequences. For example if s = {1/n}, k = {2n}, then
sk(n) = s ◦ k = {1/2n}.

Theorem 3. In R, xn → x if and only if every subsequence xk(n) → x.

Proof. ⇒: Assume xn → x, then for every ε > 0 there is an N such that n ≥ N ⇒ |x − xn| < ε.
Since {xk(n)} is a subsequence, there is an M such that k(n) ≥ N for all n ≥ M , hence n ≥ M ⇒
|x− xk(n)| < ε.

⇐: Since every subsequence xk(n) → x, choose k(n) = n, then xn → x.
�

Now lets do a few example problems for finding the limit of sequences

11) Prove that
1

n
− 1

n+ 1
→ 0 (2)

Solution: First lets do some back of the envelope calculations. We want to show∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣ < ε,

so lets first see if we can bound our sequence by something easier to deal with∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣ =

∣∣∣∣ 1

n(n+ 1)

∣∣∣∣ < ∣∣∣∣ 1

n2

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣.

Now we can do the proof

Proof. For every ε > 0, choose N(ε) = 1/ε, then for all n ≥ 1/ε,∣∣∣∣ 1n − 1

n+ 1

∣∣∣∣ < 1

n
≤ 1

ε
(3)
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15) Prove that

(2n)1/n → 1. (4)

Solution: Again we do some back of the envelope calculations. Notice that

(2n)1/n = eln(2n)/n

so ∣∣∣∣ ln(2n)

n

∣∣∣∣ < ε1 ⇒
∣∣∣∣eln(2n)/n − 1

∣∣∣∣ < ε

if ε1 = ln(ε+ 1). Furthermore,∣∣∣∣ ln(2n)

n

∣∣∣∣ < 1

ln(n)
for n > 1.

and 1/ ln(n) < ε1 for n > e1/ε1 . So, lets choose

N(ε) = e1/ ln(ε+1).

Proof. For every ε > 0, choose N(ε) = e1/ ln(ε+1), then for all n ≥ e1/ ln(ε+1),∣∣∣∣ ln(2n)

n

∣∣∣∣ < 1

ln(n)
≤ ln(ε+ 1)⇒

∣∣∣∣(2n)1/n − 1

∣∣∣∣ =

∣∣∣∣eln(2n)/n − 1

∣∣∣∣ < ∣∣∣∣eln(ε+1) − 1

∣∣∣∣ = ε.

�

Ex: Prove that rn → 0 if |r| < 1.
Solution: Notice that |r|n = exp(n ln |r|), so if n ln |r| = ln(ε), then n = ln(ε)/ ln |r|. Clearly

this n doesn’t work, but it gives us a starting point.

Proof. For every ε > 0, choose N(ε) > ln ε− ln |r|, then for all n ≥ N ,

|rn| =
∣∣ exp(n ln |r|)

∣∣ < ∣∣∣∣ exp

(
ln ε

ln |r|
ln |r|

) ∣∣∣∣ = ε
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