
Math 4350 Rahman Week 6

3.4 Bolzano-Weierstrass

We already discussed subsequences before, so lets go over some properties and prove some theorems

Property 1 (Divergence criteria). If {xn} ⊆ R, then it diverges if

(1) it is unbounded, or
(2) it has convergent subsequences with differing limits.

Lemma 1 (Monotone subsequences). If {yn} ⊆ R, it has a monotone subsequence.

Here is a proof that is different from that of the book.

Proof. Define the functions

m(n+ 1) :=

{
m(n) + 1 if yn+1 ≥ max{y1, . . . , yn},
m(n) otherwise;

k(n+ 1) :=

{
k(n) + 1 if yn+1 ≤ min{y1, . . . , yn},
k(n) otherwise;

(1)

Now we define {xk} and {zm} as susbsequences. Without loss of generality suppose {xk} terminates. If
{zm} does not terminate, then {zm} is monotone (increasing) by definition. If {zm} also terminates and
yn → p, then define

j(N + 1) :=

{
j(N) + 1 yN+1 ≤ min{yn, . . . , yN} and yN ≥ p,
j(N) otherwise;

(2)

Notice that since we are working on z without loss of generality, we will have a similar indexing from the
x-side. Since yn → p, a subsequence {wj} is decreasing.

If {yn} diverges, define a deletion set

DK := {yn : yn < yK ∀N < n < K} (3)

then {yN , yN+1, . . .} \Dk is a decreasing sequence, thereby completing the proof. �

Theorem 1 (Bolzano–Weierstrass). If {xn} ⊆ R is bounded, it has a convergent subsequence.

Proof. Since it is bounded, it has a monotone subsequence that is also bounded. Further, since bounded
monotone sequences converge, {xn} has a convergent subsequences. �

We already proved Theorem 3.4.9 earlier in the semester.
Now lets define limit superiors and inferiors.

Definition 1. Let {xn} ⊆ R be bounded, then

(1) The limit superior of {xn} is the infimum of V ⊆ R such that xn > v ∈ V for at most a finite number
of n ∈ N, and

(2) The limit inferior of {xn} is the supremum of W ⊆ R such that xn > w ∈ W for at most a finite
number of n ∈ N.

These are denoted as lim supxn and lim inf xn. In shorthand we can write them as

lim supxn = inf
n∈N

(
sup
k≥n

xk

)
, lim inf xn = sup

n∈N

(
inf
k≥n

xk

)
(4)

1



Lets look at some examples of limit superior and inferior,

(1) Consider the sequence

{xn} = {0, 1

2
,

2

3
,

3

4
, . . . 1− 1

n
, . . .

Then

yn = sup

{
1− 1

k
: k ≥ n

}
= 1, zn = inf

{
1− 1

k
: k ≥ n

}
= 1− 1

n
;

Now, sup yn = 1 and inf zn = 1 as well, so lim supxn = lim inf zn = 1.
(2) Consider the sequence xn = (−1)n, then sup{(−1)k : k ≥ n} = 1 and inf{(−1)k : k ≥ n} = −1. So,

lim supxn = 1 and lim inf xn = −1.
(3) Consider the sequence

{xn} =

{
2,−3

2
,

4

3
,−5

4
, · · · , (−1)n+1

(
1 +

1

n

)}
Then

yn = sup{xk : k ≥ n} =

{
1 + 1

n for n odd,

1 + 1
n+1 for n even;

zn = inf{xk : k ≥ n} =

{
−
(

1 + 1
n+1

)
for n odd,

−
(
1 + 1

n

)
for n even;

So, lim supxn = 1 and lim inf xn = −1.
(4) For the sequence {n}, sup{k : k ≥ n} =∞ and inf{k : k ≥ n} = n, so lim sup{n} = lim inf{n} =∞.
(5) Consider the sequence {xn} such that

xn =

{
n for n odd,
1
n for n even;

then sup{xk : k ≥ xn} =∞ and

inf{xk : k ≥ xn} =

{
n for n odd,
1
n for n even;

Therefore, lim supxn =∞ and lim inf xn = 0.

Make sure to read Theorem 3.4.11 on your own.

Theorem 2. A bounded sequence {xn} ⊆ R converges if and only if lim supxn = lim inf xn.

Proof. ⇒ If {xn} converges, then for all ε > 0, there is an N ∈ N such that |xn − p| < ε for all n ≥ N ,
so −ε < xn− p < ε, so p− ε < xn < p+ ε. Hence, p = sup{xn} and p = inf{xn} for all n ≥ N . Since
this holds for all n ≥ N , lim supxn = lim inf xn.

⇐ If lim supxn = lim inf xn, then let yn = sup{xk : k ≥ n} and zn = inf{xk : k ≥ n}, so zn ≤ xn ≤ yn
for all n ≥ N , hence there is an xn such that xn > p − ε and xn < p + ε. Therefore, p − ε < xn <
p+ ε⇒ −ε < xn − p < ε⇒ |xn − p| < ε.

�



3.5 Cauchy Sequences

Lets begin with an interesting lemma,

Lemma 2. If {xn} ⊆ R conv., then for all ε > 0, there is an N ∈ N such that |xm − xn| < ε for all
n,m ≥ N .

Proof. Let xn → p, and choose N such that |xn− p| < ε/2 for all n ≥ N , then |xm− p| < ε/2 for all m ≥ N .
Therefore, by the triangle inequality

|xm − xn| = |(xm − p)− (xn − p)| ≤ |xm − p|+ |xn − p| <
ε

2
+
ε

2
= ε

�

Clearly this is a special type of sequence, so lets define it.

Definition 2. A sequence {xn} ⊆ R is called a Cauchy sequence if
for all ε > 0, there is an N ∈ N such that |xm − xn| < ε for all n,m ≥ N .
And this property is called the Cauchy criterion.

Basically this says that as n gets larger, the terms of the sequence get closer together.
Now lets look at a couple of examples. In class I had two different, but similarly stated examples in my

head, but jumbled them up.

Ex: Consider the sequence xn = (−1)n−1

n . This will be Cauchy since

|xm − xn| =
∣∣∣∣ (−1)m−1

m
− (−1)n−1

n

∣∣∣∣ ≤ ∣∣∣∣n+m

nm

∣∣∣∣ ≤ 2N

N2
=

2

N
.

for n,m ≥ N , so we may choose N > 1/2ε.

Ex: Consider the sequence xn =
∑n

i=1
(−1)i−1

i , then

|xm − xn| =
∣∣∣∣ m∑
i=1

(−1)i−1

i
−

n∑
i=1

(−1)i−1

i

∣∣∣∣ =

∣∣∣∣ 1

n+ 1
− 1

n+ 2
+ · · · ± 1

m

∣∣∣∣ < 1

n
≤ 1

N

for n < m, without loss of generality. Then we choose N = 1/ε, which gives us the Cauchy criterion.

Notice that Lemma 3.5.4 is obvious once we prove the next theorem. Think about why that is.

Theorem 3 (Cauchy sequences). In R every Cauchy sequence converges.

Proof. Let {xn} ⊆ R be Cauchy. If the range of {xn} is finite, then all except a finite number of terms are
equal, and hence {xn} converges to this common value.

If the range is infinite, we first notice that the sequence is bounded, by the definition of a Cauchy sequence;
i.e. when ε∗ = 1 there is an N such that n ≥ N ⇒ |xn − xN | < 1. So, by Bolzano–Weierstrass {xn} has a
convergent subsequence {xm} and let xm → p. Then for all ε > 0, there is an N such that |xm−p| < ε/2 for
all m ≥ N . Further, since the sequence is Cauchy, we also have |xn − xm| < ε/2 for all n ≥ N . Therefore,
by the triangle inequality we have

|xn − p| = |(xn − xm) + (xm − p)| <
ε

2
+
ε

2
= ε,

and hence xn → p. �

Now, this leads us to a much nicer definition of completeness.

Definition 3. A metric space S is complete if every Cauchy sequence in S converges to a point in S.

For example R \ {0} is not complete. Consider {1/n}. We know 1/n→ 0, but 0 6= R \ {0}.


