MATH 4350 RAHMAN Week 6

3.4 BOLZANO-WEIERSTRASS

We already discussed subsequences before, so lets go over some properties and prove some theorems

Property 1 (Divergence criteria). If {z,,} C R, then it diverges if

(1) it is unbounded, or
(2) it has convergent subsequences with differing limits.

Lemma 1 (Monotone subsequences). If {y,} C R, it has a monotone subsequence.

Here is a proof that is different from that of the book.
Proof. Define the functions

m(n) +1 if Yn+1 2 ma’X{y17'-'7yn}7
m(n) otherwise;

(1)
(n)+1  if yppr <min{yr, ..., yn},

otherwise;

k(n)
k(n+1):=
Now we define {z}} and {z,,} as susbsequences. Without loss of generality suppose {z)} terminates. If

{zm} does not terminate, then {z,,} is monotone (increasing) by definition. If {z,,} also terminates and
Yn — P, then define

(N 1 < mi Ny ey d > p,
JN 1) = {J( )+1 ynp1 < minfy yn} and yy > p @)

J(N) otherwise;

Notice that since we are working on z without loss of generality, we will have a similar indexing from the
x-side. Since y, — p, a subsequence {w;} is decreasing.
If {y,} diverges, define a deletion set

Dk :={yn :yn <yx YN <n< K} (3)

then {yn,yn+1,-..} \ Di is a decreasing sequence, thereby completing the proof. O

Theorem 1 (Bolzano-Weierstrass). If {z,} C R is bounded, it has a convergent subsequence.

Proof. Since it is bounded, it has a monotone subsequence that is also bounded. Further, since bounded
monotone sequences converge, {z,} has a convergent subsequences. |

We already proved Theorem 3.4.9 earlier in the semester.
Now lets define limit superiors and inferiors.

Definition 1. Let {z,} C R be bounded, then

(1) The limit superior of {x,,} is the infimum of V' C R such that z,, > v € V for at most a finite number
of n € N, and

(2) The limit inferior of {z,} is the supremum of W C R such that z,, > w € W for at most a finite
number of n € N.

These are denoted as limsup x,, and lim inf z,,. In shorthand we can write them as

limsup z,, = inf <sup osk) ,  liminf 2, = sup (inf xk> 4)
neN k>n neN \k=n



Lets look at some examples of limit superior and inferior,

(1) Consider the sequence

U R

1
n

> w

1 2
{xn} - {07 57 57
Then

yn:sup{l—lszn}zl, zn:inf{l—l:an}zl—l;
k k n
Now, supy, = 1 and inf z,, = 1 as well, so limsup z,, = liminf z,, = 1.
(2) Consider the sequence z,, = (—1)", then sup{(—1)* : k > n} = 1 and inf{(-1)* : k > n} = —1. So,
limsupx, =1 and liminf z,, = —1.
(3) Consider the sequence

Then
14 L for n odd,
yn =sup{zy : k > n} = "
1+ ;27 for n even;
(1 L) f dd,
zn =inf{zg : k >n} = <+"+1 ormoe
— (1 + %) for n even;
So, limsup z,, = 1 and liminf z,, = —1.

(4) For the sequence {n}, sup{k : k > n} = oo and inf{k : k > n} = n, so limsup{n} = liminf{n} = occ.
(5) Consider the sequence {x,} such that

for n even;

{n for n odd,
Ty =

1
n
then sup{zy : k > z,} = o0 and

n  for n odd,

for n even;

inf{ay : k> x,} = {

1
n
Therefore, lim sup x,, = co and liminf z,, = 0.

Make sure to read Theorem 3.4.11 on your own.
Theorem 2. A bounded sequence {x,} CR converges if and only if limsup x,, = liminf z,,.

Proof. = If {x,} converges, then for all € > 0, there is an N € N such that |z, — p| <€ for all n > N,
S0 —€< T, —p<e€s0p—e<ax, <pte Hence, p=sup{z,} and p = inf{z,} for all n > N. Since
this holds for all n > N, limsup z,, = liminf x,,.
= If limsup x,, = liminf x,,, then let y,, = sup{zy : k > n} and z, = inf{xy : kK > n}, so z, <z, < yn
for all n > N, hence there is an x,, such that x, > p — ¢ and z,, < p + €. Therefore, p — e < x,, <
prte=—e<z,—p<e=|r,—pl <e
|



3.5 CAUCHY SEQUENCES
Lets begin with an interesting lemma,

Lemma 2. If {z,} C R conv., then for all € > 0, there is an N € N such that |z, — x,| < € for all
n,m> N.

Proof. Let z, — p, and choose N such that |z, —p| < €/2 for all n > N, then |x,, —p| < €/2 for all m > N.
Therefore, by the triangle inequality
€

2

€
[2m = &l = |(@m = p) = (@0 = P)| < lwm —pl+len —pl <5+ 5 =

Clearly this is a special type of sequence, so lets define it.

Definition 2. A sequence {z,,} C R is called a Cauchy sequence if
for all € > 0, there is an N € N such that |z, — x,| < € for all n,m > N.
And this property is called the Cauchy criterion.

Basically this says that as n gets larger, the terms of the sequence get closer together.
Now lets look at a couple of examples. In class I had two different, but similarly stated examples in my
head, but jumbled them up.

(=n"7t

Ex: Consider the sequence z, = . This will be Cauchy since

(_1)m—1 B (_1)n—1

n+m <2N_2

nm |~ N2 N’

‘xm - xn| =

for n,m > N, so we may choose N > 1/2e.
n (=1)"!

Ex: Consider the sequence x, =), ~———, then
Tt K (—1)t 1 1 1 11
— = ~ 7 = — e+ — — < —
o =l =| 2 i 2 i nt1l iz m|SnSN

i=1 i=1
for n < m, without loss of generality. Then we choose N = 1/¢, which gives us the Cauchy criterion.
Notice that Lemma 3.5.4 is obvious once we prove the next theorem. Think about why that is.

Theorem 3 (Cauchy sequences). In R every Cauchy sequence converges.

Proof. Let {x,} C R be Cauchy. If the range of {x,} is finite, then all except a finite number of terms are
equal, and hence {x,} converges to this common value.

If the range is infinite, we first notice that the sequence is bounded, by the definition of a Cauchy sequence;
i.e. when €, = 1 there is an N such that n > N = |z, — 2n| < 1. So, by Bolzano—Weierstrass {z,} has a
convergent subsequence {z,,} and let x,, — p. Then for all € > 0, there is an N such that |z, —p| < €/2 for
all m > N. Further, since the sequence is Cauchy, we also have |z, — z,,| < €/2 for all n > N. Therefore,
by the triangle inequality we have

€ €
[t =Pl = (@0 — ) + (e~ P)| < 54 5 = 6,
and hence z,, — p. O

Now, this leads us to a much nicer definition of completeness.
Definition 3. A metric space S is complete if every Cauchy sequence in S converges to a point in S.

For example R \ {0} is not complete. Consider {1/n}. We know 1/n — 0, but 0 # R\ {0}.



