Math 4350 Rahman Week 7

3.5 Cauchy Sequences Continued

An interesting type of Cauchy sequence is a contractive sequence.

Definition 1. A sequence $\{x_n\}$ is contractive if there is 0 < C < 1 such that $|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n|$ for all $n \in \mathbb{N}$.

Theorem 1. Every contractive sequence is Cauchy.

Proof. Notice that

$$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n| \le C^2|x_n - x_{n-1}| \le \cdots \le C^n|x_2 - x_1|$$

Then, without less of generality, if m > n,

$$|x_m - x_n| \le |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \dots + |x_{n+1} - x_n| \le \left(C^{m-2} + C^{m-3} + \dots + C^{n-1}\right)|x_2 - x_1|$$

$$= C^{m-1} \left(\frac{1 - C^{m-n}}{1 - C}\right)|x_2 - x_1| \le C^{m-1} \left(\frac{1}{1 - C}\right)|x_2 - x_1|.$$

Since 0 < C < 1, and 1/(1 - C) is constant, choose

$$N(\varepsilon) > \frac{\ln \frac{(1-C)\varepsilon}{|x_2-x_1|}}{\ln C} + 1,$$

then $|x_m - x_n| < \varepsilon$ for all $n \ge N$.

3.7 Infinite Series

We know what series are from Calc II, so lets jump right into it

Theorem 2 (n^{th} term test). If $\sum x_n$ converges, then $x_n \to 0$.

Proof. Consider the partial sum $S_N = \sum_{n=1}^{\infty} x_n$. If $\sum x_n$ converges then the sequence of partial sums S_N must also converge, say to S. Then for all $\varepsilon > 0$, $|x_n| = |S_N - S_{N-1}| < \varepsilon$ for all $N \ge M$ because a convergent sequence is also Cauchy. Since this holds for all ε , $x_n \to 0$.

Theorem 3 (Direct Comparison). If $0 \le x_n \le y_n$ for all $n \ge K \in \mathbb{N}$, then

- (1) If $\sum y_n$ converges so does $\sum x_n$. (2) If $\sum x_n$ diverges so does $\sum y_n$.

Proof. If $\sum y_n$ converges, then clearly $S_N = \sum_{n=K}^N y_n$ converges, which means that it is Cauchy. And since $x_n \leq y_n$ for all $n \geq K$, $R_N = \sum_{n=K}^N \leq S_N$. Further, for all $\varepsilon > 0$, if we assume without loss of generality that M > N, we have

$$|R_M - R_N| = |x_M + x_{M-1} + x_{M-2} + \dots + x_{N+1}| \le |y_M + y_{M-1} + y_{M-2} + \dots + y_{N+1}| = |S_M - S_N| < \varepsilon$$
 for all $M, N \ge K$.

Theorem 4 (Limit Comparison). Suppose $x_n, y_n > 0$ and $\frac{x_n}{y_n} \to L$, then

- (1) If $L \neq 0$, then $\sum x_n$ and $\sum y_n$ both converge or both diverge, and
- (2) if L = 0, if $\sum y_n$ converges, so does $\sum x_n$.

(1) Since $\frac{x_n}{y_n} \to L \neq 0$, there is an $N \in \mathbb{N}$ such that

$$\frac{1}{2}L \le \frac{x_n}{y_n} \le 2L \Rightarrow \frac{1}{2}Ly_n \le x_n \le 2Ly_n.$$

So, by direct comparison if without loss of generality $\sum y_n$ converges, then so does $\sum x_n$.

(2) If L=0, then $0 \le x_n \le y_n$, and again by direct comparison if $\sum y_n$ converges so does $\sum x_n$

What is a direct consequence of part b?