MATH 4350 RAHMAN Week 9

4.2 CONTINUED

Here is a theorem that we saw and proved for sequences.

Theorem 1 (Squeeze). Let f,g,h: A — R and let f(z) < g(x) < h(z). Iflim,_,, f(z) = L = lim,_,, h(x),
then lim,_,, g(x) = L.

We won’t prove it, but the proof is similar to that of sequences.
Here is another useful theorem about being bounded away from zero.

Theorem 2. Let f: A — R. If lim,_,, f(z) > 0, then for (a — d,a +0), f(x) > 0 for some § > 0 and all
r€e€AN(a—d,a+9)\ {a}.

And here is a theorem about how we can relate the limit of functions to that of sequences.

Theorem 3.

Now lets work through a bunch of examples.

Ex:

4.1.10a)

4.1.10b)

lim, _,o 2 sin % =0.
This is an easy one so we don’t have to do any scratch work. We just have to notice that sine is
bounded by 1 in absolute value.

Proof. Choose § = ¢, then for all € > 0, we have

1
rsin—| < |z] < =e.
x

a
lim, (22 + 42) = 12.

For this one we have to do a bit more work. What we have is |x — 2| < d, and what we would like

to show is |22 +4 — 12| < e. Lets try to factor this out and isolate |z — 2|,
|22 + 4o — 12| = |z — 2||z + 6] < 9]z — 2|
if |z — 2| < 1; i.e., if 6 = 1. Further, since |x — 2| < ¢§ and we want 9|z — 2| < ¢, another choice of §
is €/9.
Proof. Choose § = min(1,e/9), then for all £ > 0, we have
|o2 + 4o — 12| = |z — 2||z + 6] <9z — 2| <e.
O

limxﬁfl % =4.

This takes even more work, but the ideas are the same. The first thing we notice is that « # —3/2,

so we need to keep this in mind for our choice of §. Before we go to make any choices lets see what
happens after factoring

T+ 5 _896—1—12 _ —Tx -7 _ 7
2¢+3 22+3| | 2¢+3| |2¢+3

|z + 1].

Now, we already know that |z+1| < §, so all we need to do is bound the term in front of it. Obviously
because © # —3/2, 6 < 1/2, so lets pick § = 1/4 for the bounding. Notice that this is not THE
choice of §, but rather A choice we make purely for the sake of bounding. Now we can pick any
between 1/2 and 0, so lets pick 1/4. Notice that since we have z in the denominator, the infimum
of x will determine the supremum of 7/2z 4 3, and inf(x) = —5/4. Then we can bound and relate §
and €

1 146 = <.
2x_|_3|ac—|— | < €

Now we are ready to write our proof.




4.1.9b)

4.1.12a)

Proof. Choose 6 = min(1/4,¢/14), then for all £ > 0, we have
r+5 8r+12 —Tx—T7| 7
20+3  2r+43 20+3 | |20+3

|z + 1] <e.

O

1

lim, 1 5 = 3-
This one is pretty easy. We do have to stay away from x = —1, but that shouldn’t be too hard.
Lets factor first

x 1l |2z—-1-x 1
l+z 2| | 2422 242z
Then again since z is in the denominator we look to find the least x in order to maximize |1/2 + 2z|.

Notice that here we are safe to choose § = 1, so lets do that. Then |1/(2 + 2z)| < 1/2 since
inf(z) = 1/2. Now we can write our proof.

|l —1].

Proof. Choose § = min(1, 2¢), then for all € > 0,
T 1 _ 1
1+2 2 |2+ 2z

20 —1—=x
242z

lz—1] < = =e.

lim, o 1/2? does not exist.

Proof: ¢ —§. If L <0, |1/2% — L| > |1/2?| > 1/62. Choose £ = 1/§°.
If L > 0, suppose |z| < 4, then choose z = 1/L. If § > 1/L, choose ¢ = L? — L. If § < L, choose
e=1/6%—L. 0

Proof: Sequences. Choose z = 1/n, then 1/2% = n?. We know {n?} diverges since for all n > N,
n? > N?: i.e., it is not bounded. O

4.3 INFINITE LIMITS
Here we will just go over a bunch of definitions and theorems.

Definition 1. Let ACR, f: A — R, and a € R be a limit point of A. Then

(1) Wesay f — o0 as  — a; i.e., lim,_,, f(z) = oo, if for all M € R there is a (M) > 0 such that
forallz € A, 0< |z —a|] <d= f(z) > M.

(2) We say f — —o0 as ¢ — a; i.e., lim,_,, f(z) = —o0, if for all m € R there is a 6(m) > 0 such
that for all z € 4, 0 < |z — a] < § = f(z) > m.

Definition 2. Let A CR and f: A — R. Suppose that (a,00) C A for some a € R. We say L € R
is a limit of f as © — oo; i.e., lim, o f(z) = L, if for all £ > 0 there is a K(¢) > a such that for all
x> K, |f(z)-L| <e.

Theorem 4. Let ACR, f: A— R, and a € R be a limit point of A. Suppose f(z) < g(z) for all
x €A, x#a. Then

(1) limg—yq f(z) = 00 = lim, 4 g(x) = 00
(2) limg_yq g(x) = —00 = lim, 4 f(z) = —0c0

Proof. By definition for all M € R there is a §(M) > 0 such that |z —a|] < § = f(x) > M for all
x € A. And since g(z) > f(z) > M, lim,_,, g(z) = oo. O

Theorem 5. Let ACR, f: A— R, and that (a,00) C A for some a € R. Suppose g(z) > 0 for all
x> a and lim, o f(2)/g(x) = L. Then

(1) If L > 0, lim,_,, f(z) = 00 = lim, 4 g(z) =

(2) If L <0, lim,_,, f(z) = —00 = lim, 4 g(z) = 0



Proof. Since L > 0, there is an a1 > a such that 0 < L/2 < f(z)/g(z) < 3L/2 for © > a;. This
means 3

Ly(x) < (2) < S Lg(a),

for all x > a;. Then if lim,_,, f(x) = oo, for all M € R, there is a K > M such that if z > K,

f(z) > M. Further, g(x) > 2f(x)/3L > 2M/3L. If lim,_,, g(z) = oo, g(z) > M = f(z) >
Lg(z)/2 > MLJ2. O
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