
Math 4350 Rahman Week 9

4.2 Continued

Here is a theorem that we saw and proved for sequences.

Theorem 1 (Squeeze). Let f, g, h : A→ R and let f(x) ≤ g(x) ≤ h(x). If limx→a f(x) = L = limx→a h(x),
then limx→a g(x) = L.

We won’t prove it, but the proof is similar to that of sequences.
Here is another useful theorem about being bounded away from zero.

Theorem 2. Let f : A → R. If limx→a f(x) > 0, then for (a − δ, a + δ), f(x) > 0 for some δ > 0 and all
x ∈ A ∩ (a− δ, a+ δ) \ {a}.

And here is a theorem about how we can relate the limit of functions to that of sequences.

Theorem 3.

Now lets work through a bunch of examples.

Ex: limx→0 x sin 1
x = 0.

This is an easy one so we don’t have to do any scratch work. We just have to notice that sine is
bounded by 1 in absolute value.

Proof. Choose δ = ε, then for all ε > 0, we have∣∣∣∣x sin
1

x

∣∣∣∣ ≤ |x| < δ = ε.

�

4.1.10a) limx→2(x2 + 4x) = 12.
For this one we have to do a bit more work. What we have is |x− 2| < δ, and what we would like

to show is |x2 + 4− 12| < ε. Lets try to factor this out and isolate |x− 2|,

|x2 + 4x− 12| = |x− 2||x+ 6| < 9|x− 2|
if |x− 2| < 1; i.e., if δ = 1. Further, since |x− 2| < δ and we want 9|x− 2| < ε, another choice of δ
is ε/9.

Proof. Choose δ = min(1, ε/9), then for all ε > 0, we have

|x2 + 4x− 12| = |x− 2||x+ 6| < 9|x− 2| < ε.

�

4.1.10b) limx→−1
x+5
2x+3 = 4.

This takes even more work, but the ideas are the same. The first thing we notice is that x 6= −3/2,
so we need to keep this in mind for our choice of δ. Before we go to make any choices lets see what
happens after factoring∣∣∣∣ x+ 5

2x+ 3
− 8x+ 12

2x+ 3

∣∣∣∣ =

∣∣∣∣−7x− 7

2x+ 3

∣∣∣∣ =

∣∣∣∣ 7

2x+ 3

∣∣∣∣|x+ 1|.

Now, we already know that |x+1| < δ, so all we need to do is bound the term in front of it. Obviously
because x 6= −3/2, δ < 1/2, so lets pick δ = 1/4 for the bounding. Notice that this is not THE
choice of δ, but rather A choice we make purely for the sake of bounding. Now we can pick any δ
between 1/2 and 0, so lets pick 1/4. Notice that since we have x in the denominator, the infimum
of x will determine the supremum of 7/2x+ 3, and inf(x) = −5/4. Then we can bound and relate δ
and ε ∣∣∣∣ 7

2x+ 3

∣∣∣∣|x+ 1| < 14δ = ε.

Now we are ready to write our proof.
1



Proof. Choose δ = min(1/4, ε/14), then for all ε > 0, we have∣∣∣∣ x+ 5

2x+ 3
− 8x+ 12

2x+ 3

∣∣∣∣ =

∣∣∣∣−7x− 7

2x+ 3

∣∣∣∣ =

∣∣∣∣ 7

2x+ 3

∣∣∣∣|x+ 1| < ε.

�

4.1.9b) limx→1
x

1+x = 1
2 .

This one is pretty easy. We do have to stay away from x = −1, but that shouldn’t be too hard.
Lets factor first ∣∣∣∣ x

1 + x
− 1

2

∣∣∣∣ =

∣∣∣∣2x− 1− x
2 + 2x

∣∣∣∣ =

∣∣∣∣ 1

2 + 2x

∣∣∣∣|x− 1|.

Then again since x is in the denominator we look to find the least x in order to maximize |1/2 + 2x|.
Notice that here we are safe to choose δ = 1, so lets do that. Then |1/(2 + 2x)| < 1/2 since
inf(x) = 1/2. Now we can write our proof.

Proof. Choose δ = min(1, 2ε), then for all ε > 0,∣∣∣∣ x

1 + x
− 1

2

∣∣∣∣ =

∣∣∣∣2x− 1− x
2 + 2x

∣∣∣∣ =

∣∣∣∣ 1

2 + 2x

∣∣∣∣|x− 1| < δ

2
= ε.

�

4.1.12a) limx→0 1/x2 does not exist.

Proof: ε− δ. If L ≤ 0, |1/x2 − L| ≥ |1/x2| > 1/δ2. Choose ε = 1/δ2.
If L > 0, suppose |x| < δ, then choose x = 1/L. If δ > 1/L, choose ε = L2 − L. If δ ≤ L, choose

ε = 1/δ2 − L. �

Proof: Sequences. Choose x = 1/n, then 1/x2 = n2. We know {n2} diverges since for all n ≥ N ,
n2 ≥ N2; i.e., it is not bounded. �

4.3 Infinite limits

Here we will just go over a bunch of definitions and theorems.

Definition 1. Let A ⊆ R, f : A→ R, and a ∈ R be a limit point of A. Then
(1) We say f →∞ as x→ a; i.e., limx→a f(x) =∞, if for all M ∈ R there is a δ(M) > 0 such that

for all x ∈ A, 0 < |x− a| < δ ⇒ f(x) > M .
(2) We say f → −∞ as x→ a; i.e., limx→a f(x) = −∞, if for all m ∈ R there is a δ(m) > 0 such

that for all x ∈ A, 0 < |x− a| < δ ⇒ f(x) > m.

Definition 2. Let A ⊆ R and f : A→ R. Suppose that (a,∞) ⊆ A for some a ∈ R. We say L ∈ R
is a limit of f as x→∞; i.e., limx→∞ f(x) = L, if for all ε > 0 there is a K(ε) > a such that for all
x > K, |f(x)− L| < ε.

Theorem 4. Let A ⊆ R, f : A → R, and a ∈ R be a limit point of A. Suppose f(x) ≤ g(x) for all
x ∈ A, x 6= a. Then
(1) limx→a f(x) =∞⇒ limx→a g(x) =∞
(2) limx→a g(x) = −∞⇒ limx→a f(x) = −∞

Proof. By definition for all M ∈ R there is a δ(M) > 0 such that |x − a| < δ ⇒ f(x) > M for all
x ∈ A. And since g(x) > f(x) > M , limx→a g(x) =∞. �

Theorem 5. Let A ⊆ R, f : A→ R, and that (a,∞) ⊆ A for some a ∈ R. Suppose g(x) > 0 for all
x > a and limx→∞ f(x)/g(x) = L. Then
(1) If L > 0, limx→a f(x) =∞⇒ limx→a g(x) =∞
(2) If L < 0, limx→a f(x) = −∞⇒ limx→a g(x) =∞



Proof. Since L > 0, there is an a1 > a such that 0 < L/2 ≤ f(x)/g(x) < 3L/2 for x > a1. This
means

1

2
Lg(x) ≤ f(x) <

3

2
Lg(x),

for all x > a1. Then if limx→a f(x) = ∞, for all M ∈ R, there is a K > M such that if x > K,
f(x) > M . Further, g(x) > 2f(x)/3L > 2M/3L. If limx→a g(x) = ∞, g(x) > M ⇒ f(x) >
Lg(x)/2 > ML/2. �


