MATH 4350 RAHMAN

4.2 Continued

Here is a theorem that we saw and proved for sequences.

Theorem 1 (Squeeze). Let $f, g, h : A \to \mathbb{R}$ and let $f(x) \leq g(x) \leq h(x)$. If $\lim_{x \to a} f(x) = L = \lim_{x \to a} h(x)$, then $\lim_{x \to a} g(x) = L$.

We won't prove it, but the proof is similar to that of sequences.

Here is another useful theorem about being bounded away from zero.

Theorem 2. Let $f : A \to \mathbb{R}$. If $\lim_{x\to a} f(x) > 0$, then for $(a - \delta, a + \delta)$, f(x) > 0 for some $\delta > 0$ and all $x \in A \cap (a - \delta, a + \delta) \setminus \{a\}$.

And here is a theorem about how we can relate the limit of functions to that of sequences.

Theorem 3.

Now lets work through a bunch of examples.

Ex: $\lim_{x \to 0} x \sin \frac{1}{x} = 0.$

This is an easy one so we don't have to do any scratch work. We just have to notice that sine is bounded by 1 in absolute value.

Proof. Choose $\delta = \varepsilon$, then for all $\varepsilon > 0$, we have

$$\left|x\sin\frac{1}{x}\right| \le |x| < \delta = \varepsilon.$$

4.1.10a) $\lim_{x \to 2} (x^2 + 4x) = 12.$

For this one we have to do a bit more work. What we have is $|x-2| < \delta$, and what we would like to show is $|x^2 + 4 - 12| < \varepsilon$. Lets try to factor this out and isolate |x-2|,

$$|x^{2} + 4x - 12| = |x - 2||x + 6| < 9|x - 2|$$

if |x-2| < 1; i.e., if $\delta = 1$. Further, since $|x-2| < \delta$ and we want $9|x-2| < \varepsilon$, another choice of δ is $\varepsilon/9$.

Proof. Choose $\delta = \min(1, \varepsilon/9)$, then for all $\varepsilon > 0$, we have

$$|x^{2} + 4x - 12| = |x - 2||x + 6| < 9|x - 2| < \varepsilon.$$

4.1.10b) $\lim_{x \to -1} \frac{x+5}{2x+3} = 4.$

This takes even more work, but the ideas are the same. The first thing we notice is that $x \neq -3/2$, so we need to keep this in mind for our choice of δ . Before we go to make any choices lets see what happens after factoring

$$\left|\frac{x+5}{2x+3} - \frac{8x+12}{2x+3}\right| = \left|\frac{-7x-7}{2x+3}\right| = \left|\frac{7}{2x+3}\right||x+1|.$$

Now, we already know that $|x+1| < \delta$, so all we need to do is bound the term in front of it. Obviously because $x \neq -3/2$, $\delta < 1/2$, so lets pick $\delta = 1/4$ for the bounding. Notice that this is not **THE** choice of δ , but rather **A** choice we make purely for the sake of bounding. Now we can pick any δ between 1/2 and 0, so lets pick 1/4. Notice that since we have x in the denominator, the infimum of x will determine the supremum of 7/2x + 3, and $\inf(x) = -5/4$. Then we can bound and relate δ and ε

$$\frac{7}{2x+3}\Big||x+1|<14\delta=\varepsilon.$$

Now we are ready to write our proof.

Week 9

Proof. Choose $\delta = \min(1/4, \varepsilon/14)$, then for all $\varepsilon > 0$, we have

$$\left|\frac{x+5}{2x+3} - \frac{8x+12}{2x+3}\right| = \left|\frac{-7x-7}{2x+3}\right| = \left|\frac{7}{2x+3}\right| |x+1| < \varepsilon.$$

4.1.9b) $\lim_{x \to 1} \frac{x}{1+x} = \frac{1}{2}$.

This one is pretty easy. We do have to stay away from x = -1, but that shouldn't be too hard. Lets factor first

$$\left|\frac{x}{1+x} - \frac{1}{2}\right| = \left|\frac{2x - 1 - x}{2 + 2x}\right| = \left|\frac{1}{2 + 2x}\right| |x - 1|.$$

Then again since x is in the denominator we look to find the least x in order to maximize |1/2 + 2x|. Notice that here we are safe to choose $\delta = 1$, so lets do that. Then |1/(2 + 2x)| < 1/2 since $\inf(x) = 1/2$. Now we can write our proof.

Proof. Choose $\delta = \min(1, 2\varepsilon)$, then for all $\varepsilon > 0$,

$$\left|\frac{x}{1+x} - \frac{1}{2}\right| = \left|\frac{2x-1-x}{2+2x}\right| = \left|\frac{1}{2+2x}\right| |x-1| < \frac{\delta}{2} = \varepsilon.$$

4.1.12a) $\lim_{x\to 0} 1/x^2$ does not exist.

Proof: $\varepsilon - \delta$. If $L \leq 0$, $|1/x^2 - L| \geq |1/x^2| > 1/\delta^2$. Choose $\varepsilon = 1/\delta^2$. If L > 0, suppose $|x| < \delta$, then choose x = 1/L. If $\delta > 1/L$, choose $\varepsilon = L^2 - L$. If $\delta \leq L$, choose $\varepsilon = 1/\delta^2 - L$.

Proof: Sequences. Choose x = 1/n, then $1/x^2 = n^2$. We know $\{n^2\}$ diverges since for all $n \ge N$, $n^2 \ge N^2$; i.e., it is not bounded.

4.3 INFINITE LIMITS

Here we will just go over a bunch of definitions and theorems.

Definition 1. Let $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$, and $a \in \mathbb{R}$ be a limit point of A. Then

- (1) We say $\underline{f} \to \infty$ as $x \to a$; i.e., $\lim_{x \to a} f(x) = \infty$, if for all $M \in \mathbb{R}$ there is a $\delta(M) > 0$ such that for all $x \in A$, $0 < |x a| < \delta \Rightarrow f(x) > M$.
- (2) We say $\underline{f} \to -\infty$ as $x \to a$; i.e., $\lim_{x \to a} f(x) = -\infty$, if for all $m \in \mathbb{R}$ there is a $\delta(m) > 0$ such that for all $x \in A$, $0 < |x a| < \delta \Rightarrow f(x) > m$.

Definition 2. Let $A \subseteq \mathbb{R}$ and $f : A \to \mathbb{R}$. Suppose that $(a, \infty) \subseteq A$ for some $a \in \mathbb{R}$. We say $L \in \mathbb{R}$ is a limit of f as $x \to \infty$; i.e., $\lim_{x\to\infty} f(x) = L$, if for all $\varepsilon > 0$ there is a $K(\varepsilon) > a$ such that for all $x > \overline{K}$, $|f(x) - L| < \varepsilon$.

Theorem 4. Let $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$, and $a \in \mathbb{R}$ be a limit point of A. Suppose $f(x) \leq g(x)$ for all $x \in A$, $x \neq a$. Then

(1) $\lim_{x \to a} f(x) = \infty \Rightarrow \lim_{x \to a} g(x) = \infty$

(2) $\lim_{x \to a} g(x) = -\infty \Rightarrow \lim_{x \to a} f(x) = -\infty$

Proof. By definition for all $M \in \mathbb{R}$ there is a $\delta(M) > 0$ such that $|x - a| < \delta \Rightarrow f(x) > M$ for all $x \in A$. And since g(x) > f(x) > M, $\lim_{x \to a} g(x) = \infty$.

Theorem 5. Let $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$, and that $(a, \infty) \subseteq A$ for some $a \in \mathbb{R}$. Suppose g(x) > 0 for all x > a and $\lim_{x\to\infty} f(x)/g(x) = L$. Then

(1) If L > 0, $\lim_{x \to a} f(x) = \infty \Rightarrow \lim_{x \to a} g(x) = \infty$

(2) If L < 0, $\lim_{x \to a} f(x) = -\infty \Rightarrow \lim_{x \to a} g(x) = \infty$

Proof. Since L > 0, there is an $a_1 > a$ such that $0 < L/2 \le f(x)/g(x) < 3L/2$ for $x > a_1$. This means

$$\frac{1}{2}Lg(x) \le f(x) < \frac{3}{2}Lg(x),$$

for all $x > a_1$. Then if $\lim_{x\to a} f(x) = \infty$, for all $M \in \mathbb{R}$, there is a K > M such that if x > K, f(x) > M. Further, g(x) > 2f(x)/3L > 2M/3L. If $\lim_{x\to a} g(x) = \infty$, $g(x) > M \Rightarrow f(x) > Lg(x)/2 > ML/2$.